3 resultados para Teorema Egregium de Gauss

em Biblioteca de Teses e Dissertações da USP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A correspondência AdS/CFT é uma notável ferramenta no estudo de teorias de gauge fortemente acopladas que podem ser mapeadas em uma descrição gravitacional dual fracamente acoplada. A correspondência é melhor entendida no limite em que ambos $N$ e $\\lambda$, o rank do grupo de gauge e o acoplamento de \'t Hooft da teoria de gauge, respectivamente, são infinitos. Levar em consideração interações com termos de curvatura de ordem superior nos permite considerar correções de $\\lambda$ finito. Por exemplo, a primeira correção de acoplamento finito para supergravidade tipo IIB surge como um termo de curvatura com forma esquemática $\\alpha\'^3 R^4$. Neste trabalho investigamos correções de curvatura no contexto da gravidade de Lovelock, que é um cenário simples para investigar tais correções pois as suas equações de movimento ainda são de segunda ordem em derivadas. Esse cenário também é particularmente interessante do ponto de vista da correspondência AdS/CFT devido a sua grande classe de soluções de buracos negros assintoticamente AdS. Consideramos um sistema de gravidade AdS-axion-dilaton em cinco dimensões com um termo de Gauss-Bonnet e encontramos uma solução das equações de movimento, o que corresponde a uma black brane exibindo uma anisotropia espacial, onde a fonte da anisotropia é um campo escalar linear em uma das coordenadas espaciais. Estudamos suas propriedades termodinâmicas e realizamos a renormalização holográfica usando o método de Hamilton-Jacobi. Finalmente, usamos a solução obtida como dual gravitacional de um plasma anisotrópico fortemente acoplado com duas cargas centrais independentes, $a eq c$. Calculamos vários observáveis relevantes para o estudo do plasma, a saber, a viscosidade de cisalhamento sobre densidade de entropia, a força de arrasto, o parâmetro de jet quenching, o potencial entre um par quark-antiquark e a taxa de produção de fótons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O método dos elementos finitos é o método numérico mais difundido na análise de estruturas. Ao longo das últimas décadas foram formulados inúmeros elementos finitos para análise de cascas e placas. As formulações de elementos finitos lidam bem com o campo de deslocamentos, mas geralmente faltam testes que possam validar os resultados obtidos para o campo das tensões. Este trabalho analisa o elemento finito T6-3i, um elemento finito triangular de seis nós proposto dentro de uma formulação geometricamente exata, em relação aos seus resultados de tensões, comparando-os com as teorias analíticas de placas, resultados de tabelas para o cálculo de momentos em placas retangulares e do ANSYSr, um software comercial para análise estrutural, mostrando que o T6-3i pode apresentar resultados insatisfatórios. Na segunda parte deste trabalho, as potencialidades do T6-3i são expandidas, sendo proposta uma formulação dinâmica para análise não linear de cascas. Utiliza-se um modelo Lagrangiano atualizado e a forma fraca é obtida do Teorema dos Trabalhos Virtuais. São feitas simulações numéricas da deformação de domos finos que apresentam vários snap-throughs e snap-backs, incluindo domos com vincos curvos, mostrando a robustez, simplicidade e versatilidade do elemento na sua formulação e na geração das malhas não estruturadas necessárias para as simulações.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis is focused on the development of a thorough mathematical modelling and computational solution framework aimed at the numerical simulation of journal and sliding bearing systems operating under a wide range of lubrication regimes (mixed, elastohydrodynamic and full film lubrication regimes) and working conditions (static, quasi-static and transient conditions). The fluid flow effects have been considered in terms of the Isothermal Generalized Equation of the Mechanics of the Viscous Thin Films (Reynolds equation), along with the massconserving p-Ø Elrod-Adams cavitation model that accordingly ensures the so-called JFO complementary boundary conditions for fluid film rupture. The variation of the lubricant rheological properties due to the viscous-pressure (Barus and Roelands equations), viscous-shear-thinning (Eyring and Carreau-Yasuda equations) and density-pressure (Dowson-Higginson equation) relationships have also been taken into account in the overall modelling. Generic models have been derived for the aforementioned bearing components in order to enable their applications in general multibody dynamic systems (MDS), and by including the effects of angular misalignments, superficial geometric defects (form/waviness deviations, EHL deformations, etc.) and axial motion. The bearing exibility (conformal EHL) has been incorporated by means of FEM model reduction (or condensation) techniques. The macroscopic in fluence of the mixedlubrication phenomena have been included into the modelling by the stochastic Patir and Cheng average ow model and the Greenwood-Williamson/Greenwood-Tripp formulations for rough contacts. Furthermore, a deterministic mixed-lubrication model with inter-asperity cavitation has also been proposed for full-scale simulations in the microscopic (roughness) level. According to the extensive mathematical modelling background established, three significant contributions have been accomplished. Firstly, a general numerical solution for the Reynolds lubrication equation with the mass-conserving p - Ø cavitation model has been developed based on the hybridtype Element-Based Finite Volume Method (EbFVM). This new solution scheme allows solving lubrication problems with complex geometries to be discretized by unstructured grids. The numerical method was validated in agreement with several example cases from the literature, and further used in numerical experiments to explore its exibility in coping with irregular meshes for reducing the number of nodes required in the solution of textured sliding bearings. Secondly, novel robust partitioned techniques, namely: Fixed Point Gauss-Seidel Method (PGMF), Point Gauss-Seidel Method with Aitken Acceleration (PGMA) and Interface Quasi-Newton Method with Inverse Jacobian from Least-Squares approximation (IQN-ILS), commonly adopted for solving uid-structure interaction problems have been introduced in the context of tribological simulations, particularly for the coupled calculation of dynamic conformal EHL contacts. The performance of such partitioned methods was evaluated according to simulations of dynamically loaded connecting-rod big-end bearings of both heavy-duty and high-speed engines. Finally, the proposed deterministic mixed-lubrication modelling was applied to investigate the in fluence of the cylinder liner wear after a 100h dynamometer engine test on the hydrodynamic pressure generation and friction of Twin-Land Oil Control Rings.