2 resultados para Statistics, Nonparametric

em Biblioteca de Teses e Dissertações da USP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A análise de dados de sobrevivência tem sido tradicionalmente baseada no modelo de regressão de Cox (COX, 1972). No entanto, a suposição de taxas de falha proporcionais assumida para esse modelo pode não ser atendida em diversas situações práticas. Essa restrição do modelo de Cox tem gerado interesse em abordagens alternativas, dentre elas os modelos dinâmicos que permitem efeito das covariáveis variando no tempo. Neste trabalho, foram revisados os principais modelos de sobrevivência dinâmicos com estrutura aditiva e multiplicativa nos contextos não paramétrico e semiparamétrico. Métodos gráficos baseados em resíduos foram apresentados com a finalidade de avaliar a qualidade de ajuste desses modelos. Uma versão tempo-dependente da área sob a curva ROC, denotada por AUC(t), foi proposta com a finalidade de avaliar e comparar a qualidade de predição entre modelos de sobrevivência com estruturas aditiva e multiplicativa. O desempenho da AUC(t) foi avaliado por meio de um estudo de simulação. Dados de três estudos descritos na literatura foram também analisados para ilustrar ou complementar os cenários que foram considerados no estudo de simulação. De modo geral, os resultados obtidos indicaram que os métodos gráficos apresentados para avaliar a adequação dos modelos em conjunto com a AUC(t) se constituem em um conjunto de ferramentas estatísticas úteis para o próposito de avaliar modelos de sobrevivência dinâmicos nos contextos não paramétrico e semiparamétrico. Além disso, a aplicação desse conjunto de ferramentas em alguns conjuntos de dados evidenciou que se, por um lado, os modelos dinâmicos são atrativos por permitirem covariáveis tempo-dependentes, por outro lado podem não ser apropriados para todos os conjuntos de dados, tendo em vista que estimação pode apresentar restrições para alguns deles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we present the generation and studies of a 87Rb Bose-Einstein condensate (BEC) perturbed by an oscillatory excitation. The atoms are trapped in a harmonic magnetic trap where, after an evaporative cooling process, we produce the BEC. In order to study the effect caused by oscillatory excitations, a quadrupole magnetic field time oscillatory is superimposed to the trapping potential. Through this perturbation, collective modes were observed. The dipole mode is excited even for low excitation amplitudes. However, a minimum excitation energy is needed to excite the condensate quadrupole mode. Observing the excited cloud in TOF expansion, we note that for excitation amplitude in which the quadrupole mode is excited, the cloud expands without invert its aspect ratio. By looking these clouds, after long time-of-flight, it was possible to see vortices and, sometimes, a turbulent state in the condensed cloud. We calculated the momentum distribution of the perturbed BECs and a power law behavior, like the law to Kolmogorov turbulence, was observed. Furthermore, we show that using the method that we have developed to calculate the momentum distribution, the distribution curve (including the power law exponent) exhibits a dependence on the quadrupole mode oscillation of the cloud. The randomness distribution of peaks and depletions in density distribution image of an expanded turbulent BEC, remind us to the intensity profile of a speckle light beam. The analogy between matter-wave speckle and light speckle is justified by showing the similarities in the spatial propagation (or time expansion) of the waves. In addition, the second order correlation function is evaluated and the same dependence with distance was observed for the both waves. This creates the possibility to understand the properties of quantum matter in a disordered state. The propagation of a three-dimensional speckle field (as the matter-wave speckle described here) creates an opportunity to investigate the speckle phenomenon existing in dimensions higher than 2D (the case of light speckle).