2 resultados para Sistemas mecânicos
em Biblioteca de Teses e Dissertações da USP
Resumo:
Este trabalho apresenta o controle de posição e orientação de um modelo não linear de Plataforma de Stewart com seis graus de liberdade construído no ambiente de sistemas multicorpos ADAMS® desenvolvido pela Mechanical Dynamics, Inc. O modelo não linear é exportado para o ambiente SIMULINK® desenvolvido pela MathWorks, Inc., onde o controle de posição e orientação é realizado a partir da linearização do modelo e a aplicação de um sistema seguidor com realimentação de estados. Utililiza-se, também o SIMULINK® para implementar a dinâmica de um sistema servoválvula e cilindro hidráulico com um servocontrole de pressão e assim simular o comportamento dinâmico de um simulador de vôo com acionamento hidráulico. A utilização destes pacotes comerciais visa obter uma economia de tempo e esforço na modelagem de sistemas mecânicos complexos e na programação para obtenção da resposta do sistema no tempo, além de facilitar a análise de várias configurações de Plataformas de Stewart
Resumo:
Multibody System Dynamics has been responsible for revolutionizing Mechanical Engineering Design by using mathematical models to simulate and optimize the dynamic behavior of a wide range of mechanical systems. These mathematical models not only can provide valuable informations about a system that could otherwise be obtained only by experiments with prototypes, but also have been responsible for the development of many model-based control systems. This work represents a contribution for dynamic modeling of multibody mechanical systems by developing a novel recursive modular methodology that unifies the main contributions of several Classical Mechanics formalisms. The reason for proposing such a methodology is to motivate the implementation of computational routines for modeling complex multibody mechanical systems without being dependent on closed source software and, consequently, to contribute for the teaching of Multibody System Dynamics in undergraduate and graduate levels. All the theoretical developments are based on and motivated by a critical literature review, leading to a general matrix form of the dynamic equations of motion of a multibody mechanical system (that can be expressed in terms of any set of variables adopted for the description of motions performed by the system, even if such a set includes redundant variables) and to a general recursive methodology for obtaining mathematical models of complex systems given a set of equations describing the dynamics of each of its uncoupled subsystems and another set describing the constraints among these subsystems in the assembled system. This work also includes some discussions on the description of motion (using any possible set of motion variables and admitting any kind of constraint that can be expressed by an invariant), and on the conditions for solving forward and inverse dynamics problems given a mathematical model of a multibody system. Finally, some examples of computational packages based on the novel methodology, along with some case studies, are presented, highlighting the contributions that can be achieved by using the proposed methodology.