2 resultados para Seleção de Modelos

em Biblioteca de Teses e Dissertações da USP


Relevância:

30.00% 30.00%

Publicador:

Resumo:

O milho de segunda safra, também conhecido como milho safrinha, é definido como aquele semeado entre os meses de janeiro e março. Esta modalidade de cultivo atingiu no ano agrícola de 2013/2014 uma área plantada de 9,18 milhões de hectares, superior a área cultivada com milho primeira safra, que no mesmo período foi de 6,61 milhões de hectares. Na segunda safra, há alto risco de instabilidades climáticas, principalmente em decorrência de baixas temperaturas, geadas, má distribuição de chuvas e redução do fotoperíodo. Todos estes fatores prejudicam a atividade fotossintética do milho, reduzindo sua produtividade. No entanto, dada a importância deste cultivo, empresas públicas, privadas e universidades vêm buscando incrementar a produtividade e a estabilidade. Para isso, alguns caracteres são especialmente preconizados. Devido ao alto risco de perda por adversidades ambientais, muitos produtores investem pouco em adubação, principalmente adubação nitrogenada. Neste contexto, o desenvolvimento de plantas mais eficientes no uso e, ou, tolerantes ao estresse por nitrogênio, resultaria em maior segurança para o produtor. Não obstante, a precocidade tem elevada importância, já que materiais precoces reduzem o risco de perdas neste período. No entanto, a mesma deve estar sempre associada a alta produtividade. Assim, para a seleção simultânea destes caracteres, pode-se lançar mão de índices per se de resposta das plantas ao estresse, análises gráficas e, ou, índices de seleção simultânea. Adicionalmente, os valores genotípicos das linhagens para essas características, além de serem preditos via REML/BLUP single-trait (análise univariada), também podem ser preditos via REML/BLUP multi-trait (análise multivariada). Dessa forma, os valores genotípicos são corrigidos pela covariância existente entre os caracteres. Assim, o objetivo deste trabalho foi verificar a possibilidade de seleção simultânea para eficiência no uso e tolerância ao estresse por nitrogênio, além de plantas precoces e produtivas. Para isto, linhagens de milho tropical foram cultivadas e avaliadas para estes caracteres. Foram então simulados diversos cenários de seleção simultânea. A partir destes resultados, observou-se que o índice per se de resposta das plantas ao estresse Média Harmônica da Performance Relativa (MHPR) foi o mais eficiente na seleção de plantas eficientes no uso e tolerantes ao estresse por nitrogênio. Isto ocorreu devido a forte correlação desfavorável entre os índices que estimam a eficiência e a tolerância, além da superioridade e em acurácia, herdabilidade e ganhos com a seleção deste índice per se. Já para a seleção simultânea da produtividade e precocidade, o índice Aditivo de seleção simultânea, utilizando os valores genotípicos preditos via REML/BLUP single-trait se mostrou o mais eficiente, já que obteve ganhos satisfatórios em todos os caracteres e há a possibilidade de modular, de forma mais satisfatória, os ganhos em cada caractere. Conclui-se que a seleção simultânea tanto para eficiência no uso e tolerância ao estresse por nitrogênio, quanto para produtividade e precocidade são possíveis. Além disso, a escolha do melhor método de seleção simultânea depende da magnitude e do sentido da correlação entre os caracteres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O Teste Baseado em Modelos (TBM) emergiu como uma estratégia promissora para minimizar problemas relacionados à falta de tempo e recursos em teste de software e visa verificar se a implementação sob teste está em conformidade com sua especificação. Casos de teste são gerados automaticamente a partir de modelos comportamentais produzidos durante o ciclo de desenvolvimento de software. Entre as técnicas de modelagem existentes, Sistemas de Transição com Entrada/Saída (do inglês, Input/Output Transition Systems - IOTSs), são modelos amplamente utilizados no TBM por serem mais expressivos do que Máquinas de Estado Finito (MEFs). Apesar dos métodos existentes para geração de testes a partir de IOTSs, o problema da seleção de casos de testes é um tópico difícil e importante. Os métodos existentes para IOTS são não-determinísticos, ao contrário da teoria existente para MEFs, que fornece garantia de cobertura completa com base em um modelo de defeitos. Esta tese investiga a aplicação de modelos de defeitos em métodos determinísticos de geração de testes a partir de IOTSs. Foi proposto um método para geração de conjuntos de teste com base no método W para MEFs. O método gera conjuntos de teste de forma determinística além de satisfazer condições de suficiência de cobertura da especificação e de todos os defeitos do domínio de defeitos definido. Estudos empíricos avaliaram a aplicabilidade e eficácia do método proposto: resultados experimentais para analisar o custo de geração de conjuntos de teste utilizando IOTSs gerados aleatoriamente e um estudo de caso com especificações da indústria mostram a efetividade dos conjuntos gerados em relação ao método tradicional de Tretmans.