2 resultados para Saúde - Banco de dados

em Biblioteca de Teses e Dissertações da USP


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta tese apresenta uma abordagem para a criação rápida de modelos em diferentes geometrias (complexas ou de alta simetria) com objetivo de calcular a correspondente intensidade espalhada, podendo esta ser utilizada na descrição de experimentos de es- palhamento à baixos ângulos. A modelagem pode ser realizada com mais de 100 geome- trias catalogadas em um Banco de Dados, além da possibilidade de construir estruturas a partir de posições aleatórias distribuídas na superfície de uma esfera. Em todos os casos os modelos são gerados por meio do método de elementos finitos compondo uma única geometria, ou ainda, compondo diferentes geometrias, combinadas entre si a partir de um número baixo de parâmetros. Para realizar essa tarefa foi desenvolvido um programa em Fortran, chamado de Polygen, que permite modelar geometrias convexas em diferentes formas, como sólidos, cascas, ou ainda com esferas ou estruturas do tipo DNA nas arestas, além de usar esses modelos para simular a curva de intensidade espalhada para sistemas orientados e aleatoriamente orientados. A curva de intensidade de espalhamento é calculada por meio da equação de Debye e os parâmetros que compõe cada um dos modelos, podem ser otimizados pelo ajuste contra dados experimentais, por meio de métodos de minimização baseados em simulated annealing, Levenberg-Marquardt e algorítmicos genéticos. A minimização permite ajustar os parâmetros do modelo (ou composição de modelos) como tamanho, densidade eletrônica, raio das subunidades, entre outros, contribuindo para fornecer uma nova ferramenta para modelagem e análise de dados de espalhamento. Em outra etapa desta tese, é apresentado o design de modelos atomísticos e a sua respectiva simulação por Dinâmica Molecular. A geometria de dois sistemas auto-organizado de DNA na forma de octaedro truncado, um com linkers de 7 Adeninas e outro com linkers de ATATATA, foram escolhidas para realizar a modelagem atomística e a simulação por Dinâmica Molecular. Para este sistema são apresentados os resultados de Root Mean Square Deviations (RMSD), Root Mean Square Fluctuations (RMSF), raio de giro, torção das hélices duplas de DNA além da avaliação das ligações de Hidrogênio, todos obtidos por meio da análise de uma trajetória de 50 ns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

According to the last global burden of disease published by the World Health Organization, tumors were the third leading cause of death worldwide in 2004. Among the different types of tumors, colorectal cancer ranks as the fourth most lethal. To date, tumor diagnosis is based mainly on the identification of morphological changes in tissues. Considering that these changes appears after many biochemical reactions, the development of vibrational techniques may contribute to the early detection of tumors, since they are able to detect such reactions. The present study aimed to develop a methodology based on infrared microspectroscopy to characterize colon samples, providing complementary information to the pathologist and facilitating the early diagnosis of tumors. The study groups were composed by human colon samples obtained from paraffin-embedded biopsies. The groups are divided in normal (n=20), inflammation (n=17) and tumor (n=18). Two adjacent slices were acquired from each block. The first one was subjected to chemical dewaxing and H&E staining. The infrared imaging was performed on the second slice, which was not dewaxed or stained. A computational preprocessing methodology was employed to identify the paraffin in the images and to perform spectral baseline correction. Such methodology was adapted to include two types of spectral quality control. Afterwards the preprocessing step, spectra belonging to the same image were analyzed and grouped according to their biochemical similarities. One pathologist associated each obtained group with some histological structure based on the H&E stained slice. Such analysis highlighted the biochemical differences between the three studied groups. Results showed that severe inflammation presents biochemical features similar to the tumors ones, indicating that tumors can develop from inflammatory process. A spectral database was constructed containing the biochemical information identified in the previous step. Spectra obtained from new samples were confronted with the database information, leading to their classification into one of the three groups: normal, inflammation or tumor. Internal and external validation were performed based on the classification sensitivity, specificity and accuracy. Comparison between the classification results and H&E stained sections revealed some discrepancies. Some regions histologically normal were identified as inflammation by the classification algorithm. Similarly, some regions presenting inflammatory lesions in the stained section were classified into the tumor group. Such differences were considered as misclassification, but they may actually evidence that biochemical changes are in course in the analyzed sample. In the latter case, the method developed throughout this thesis would have proved able to identify early stages of inflammatory and tumor lesions. It is necessary to perform additional experiments to elucidate this discrepancy between the classification results and the morphological features. One solution would be the use of immunohistochemistry techniques with specific markers for tumor and inflammation. Another option includes the recovering of the medical records of patients who participated in this study in order to check, in later times to the biopsy collection, whether they actually developed the lesions supposedly detected in this research.