2 resultados para SVM
em Biblioteca de Teses e Dissertações da USP
Resumo:
Uma imagem engloba informação que precisa ser organizada para interpretar e compreender seu conteúdo. Existem diversas técnicas computacionais para extrair a principal informação de uma imagem e podem ser divididas em três áreas: análise de cor, textura e forma. Uma das principais delas é a análise de forma, por descrever características de objetos baseadas em seus pontos fronteira. Propomos um método de caracterização de imagens, por meio da análise de forma, baseada nas propriedades espectrais do laplaciano em grafos. O procedimento construiu grafos G baseados nos pontos fronteira do objeto, cujas conexões entre vértices são determinadas por limiares T_l. A partir dos grafos obtêm-se a matriz de adjacência A e a matriz de graus D, as quais definem a matriz Laplaciana L=D -A. A decomposição espectral da matriz Laplaciana (autovalores) é investigada para descrever características das imagens. Duas abordagens são consideradas: a) Análise do vetor característico baseado em limiares e a histogramas, considera dois parâmetros o intervalo de classes IC_l e o limiar T_l; b) Análise do vetor característico baseado em vários limiares para autovalores fixos; os quais representam o segundo e último autovalor da matriz L. As técnicas foram testada em três coleções de imagens: sintéticas (Genéricas), parasitas intestinais (SADPI) e folhas de plantas (CNShape), cada uma destas com suas próprias características e desafios. Na avaliação dos resultados, empregamos o modelo de classificação support vector machine (SVM), o qual avalia nossas abordagens, determinando o índice de separação das categorias. A primeira abordagem obteve um acerto de 90 % com a coleção de imagens Genéricas, 88 % na coleção SADPI, e 72 % na coleção CNShape. Na segunda abordagem, obtém-se uma taxa de acerto de 97 % com a coleção de imagens Genéricas; 83 % para SADPI e 86 % no CNShape. Os resultados mostram que a classificação de imagens a partir do espectro do Laplaciano, consegue categorizá-las satisfatoriamente.
Resumo:
A anotação geográfica de documentos consiste na adoção de metadados para a identificação de nomes de locais e a posição de suas ocorrências no texto. Esta informação é útil, por exemplo, para mecanismos de busca. A partir dos topônimos mencionados no texto é possível identificar o contexto espacial em que o assunto do texto está inserido, o que permite agrupar documentos que se refiram a um mesmo contexto, atribuindo ao documento um escopo geográfico. Esta Dissertação de Mestrado apresenta um novo método, batizado de Geofier, para determinação do escopo geográfico de documentos. A novidade apresentada pelo Geofier é a possibilidade da identificação do escopo geográfico de um documento por meio de classificadores de aprendizagem de máquina treinados sem o uso de um gazetteer e sem premissas quanto à língua dos textos analisados. A Wikipédia foi utilizada como fonte de um conjunto de documentos anotados geograficamente para o treinamento de uma hierarquia de Classificadores Naive Bayes e Support Vector Machines (SVMs). Uma comparação de desempenho entre o Geofier e uma reimplementação do sistema Web-a-Where foi realizada em relação à determinação do escopo geográfico dos textos da Wikipédia. A hierarquia do Geofier foi treinada e avaliada de duas formas: usando topônimos do mesmo gazetteer que o Web-a-Where e usando n-gramas extraídos dos documentos de treinamento. Como resultado, o Geofier manteve desempenho superior ao obtido pela reimplementação do Web-a-Where.