4 resultados para PLATINUM ELECTROCATALYST
em Biblioteca de Teses e Dissertações da USP
Resumo:
O aumento no consumo energético e a crescente preocupação ambiental frente à emissão de gases poluentes criam um apelo mundial favorável para pesquisas de novas tecnologias não poluentes de fontes de energia. Baterias recarregáveis de lítio-ar em solventes não aquosos possuem uma alta densidade de energia teórica (5200 Wh kg-1), o que as tornam promissoras para aplicação em dispositivos estacionários e em veículos elétricos. Entretanto, muitos problemas relacionados ao cátodo necessitam ser contornados para permitir a aplicação desta tecnologia, por exemplo, a baixa reversibilidade das reações, baixa potência e instabilidades dos materiais empregados nos eletrodos e dos solventes eletrolíticos. Assim, neste trabalho um modelo cinético foi empregado para os dados experimentais de espectroscopia de impedância eletroquímica, para a obtenção das constantes cinéticas das etapas elementares do mecanismo da reação de redução de oxigênio (RRO), o que permitiu investigar a influência de parâmetros como o tipo e tamanho de partícula do eletrocatalisador, o papel do solvente utilizado na RRO e compreender melhor as reações ocorridas no cátodo dessa bateria. A investigação inicial se deu com a utilização de sistemas menos complexos como uma folha de platina ou eletrodo de carbono vítreo como eletrodos de trabalho em 1,2-dimetoxietano (DME)/perclorato de lítio (LiClO4). A seguir, sistemas complexos com a presença de nanopartículas de carbono favoreceu o processo de adsorção das moléculas de oxigênio e aumentou ligeiramente (uma ordem de magnitude) a etapa de formação de superóxido de lítio (etapa determinante de reação) quando comparada com os eletrodos de platina e carbono vítreo, atribuída à presença dos grupos laterais mediando à transferência eletrônica para as moléculas de oxigênio. No entanto, foi observada uma rápida passivação da superfície eletrocatalítica através da formação de filmes finos de Li2O2 e Li2CO3 aumentando o sobrepotencial da bateria durante a carga (diferença de potencial entre a carga e descarga > 1 V). Adicionalmente, a incorporação das nanopartículas de platina (Ptnp), ao invés da folha de platina, resultou no aumento da constante cinética da etapa determinante da reação em duas ordens de magnitude, o qual pode ser atribuído a uma mudança das propriedades eletrônicas na banda d metálica em função do tamanho nanométrico das partículas, e estas modificações contribuíram para uma melhor eficiência energética quando comparado ao sistema sem a presença de eletrocatalisador. Entretanto, as Ptnp se mostraram não específicas para a RRO, catalisando as reações de degradação do solvente eletrolítico e diminuindo rapidamente a eficiência energética do dispositivo prático, devido ao acúmulo de material no eletrodo. O emprego de líquido iônico como solvente eletrolítico, ao invés de DME, promoveu uma maior estabilização do intermediário superóxido formado na primeira etapa de transferência eletrônica, devido à interação com os cátions do líquido iônico em solução, o qual resultou em um valor de constante cinética da formação do superóxido de três ordens de magnitude maior que o obtido com o mesmo eletrodo de carbono vítreo em DME, além de diminuir as reações de degradação do solvente. Estes fatores podem contribuir para uma maior potência e ciclabilidade da bateria de lítio-ar operando com líquidos iônicos.
Resumo:
O trabalho descrito nesta tese mostra de forma detalhada a fabricação e caracterização de diferentes microssensores eletroquímicos os quais têm sido recentemente utilizados como sondas em grupo de técnicas conhecida como Scanning Electrochemical Probe Microscopy (SEPM). Desta forma, a caracterização de superfícies pode ser feita explorando diferentes fenômenos interfaciais relevantes à Ciência. Neste sentido, as interfaces de materiais cristalinos como hidroxiapatita (materiais dentários) e calcita foram o foco de estudo neste trabalho. Assim, diferentes técnicas SEPM foram exploradas no sentido de se obter informações relevantes relacionadas aos processos dentários, como a erosão ácida e hipersensibilidade. Inicialmente, microeletrodos de platina foram desenvolvidos empregando uma metodologia convencional na qual são utilizados microfibras encapsuladas em capilares de vidro. Scanning Electrochemical Microscopy (SECM) no modo amperométrico foi utilizada para obtenção de informações com relação às alterações de topografia do esmalte dentário causadas pelo contato com substâncias ácidas. Adicionalmente, SECM foi empregada no estudo do transporte de espécies eletroativas em amostras de dentina e investigações relacionadas ao bloqueio dos túbulos empregando-se cremes dentais comerciais foram realizadas. A permeação de peróxido de hidrogênio pela dentina também foi estudada. Os resultados de SECM foram comparados com imagens SEM obtidas nas mesmas condições experimentais. Microeletrodos de membrana ionófora íon-seletiva (Ion Selective Microelectrodes-ISMEs) sensíveis a íons cálcio também foram desenvolvidos e caracterizados, com subsequente aplicação em SECM no modo potenciométrico. A dissolução ácida de esmalte bovino (erosão dentária) foi investigada em diferentes valores de pH (2,5; 4,5; 6,8). Além disso, o transporte de íons cálcio através de membranas porosas sintéticas foi avaliado a uma distância tip/substrato de 300µm. Alterações no fluxo de íons cálcio foram correlacionadas em experimentos realizados na presença e ausência de campos magnéticos gerados por nanopartículas de magnetita incorporadas à membrana porosa. Microcristais de calcita facilmente sintetizados pelo método de precipitação foram utilizados como superfície modelo para investigações interfaciais, cujos resultados podem ser correlacionados aos materiais dentários. Desta forma, nanopipetas de vidro preenchidas com eletrólito suporte foram fabricadas e utilizadas como sonda em Scanning Ion Conductance Microscopy (SICM). O mapeamento topográfico de alta resolução espacial da superfície de um microcristal de calcita foi obtido utilizando o modo de varredura hopping mode. Adicionalmente, sondas multifuncionais ISME-SICM também foram desenvolvidas e caracterizadas para investigações simultâneas com relação às alterações topográficas e quantificação de íons cálcio sobre a superfície de um microcristal de calcita. A adição de reagentes ácidos no canal SICM promoveu a dissolução da superfície do microcristal, sendo obtidos dados cinéticos de dissolução. Investigações em meio neutro também foram realizadas utilizando a sonda ISME-SICM. Os resultados experimentais obtidos também foram comparados com aqueles oriundos de simulação computacional.
Resumo:
Na primeira parte do trabalho, foram investigados materiais ativos para eletro-oxidar etanol e acetaldeído seletivos para a rota C2 (Carbono 2) e, também, ativos para eletro-oxidar hidrogênio molecular, visando a aplicação em células a combustível de hidrogênio indireto. Neste tipo de célula, um processador de combustível externo desidrogena o etanol e os produtos desta reação, contendo H2, acetaldeído e, possivelmente, etanol residual, são direcionados para alimentar o ânodo. Neste sentido, o eletrocatalisador anódico pode ser ativo para a eletro-oxidação de etanol residual, bem como acetaldeído, mas este deve catalisar a reação via C2 com o objetivo de evitar a formação de espécies que envenenam a superfície catalítica (CO ou CHx), ou seja, a ligação C-C deve permanecer intacta. Os eletrocatalisadores bimetálicos foram formados por M/Pt/C (onde M = W, Ru ou Sn) e os produtos reacionais foram analisados por DEMS On-line. Os resultados mostraram que Ru/Pt/C e Sn/Pt/C apresentaram maiores taxas de reação global, no entanto, eles não foram seletivos. Por outro lado, W2/Pt3/C foi mais seletivo para a rota C2, dada a não formação de CH4 e CO2. Além disso, este material também foi ativo e estável para a eletro-oxidação de H2, mesmo na presença de acetaldeído, o que o torna um potencial catalisador para aplicação no ânodo de células a combustível de hidrogênio indireto. Na segunda parte do trabalho, o objetivo foi relacionado com o estudo de eletrocatalisadores seletivos para a rota C1 (Carbono 1). A oxidação eletroquímica do etanol e de seus produtos reacionais foram investigados por DEMS on-line em temperatura ambiente e intermediária (245oC). Para temperatura ambiente, utilizou-se solução aquosa de ácido sulfúrico (H2SO4) e, para temperatura intermediária, utilizou-se ácido sólido (CsH2PO4) como eletrólito. Os eletrocatalisadores investigados foram formados por SnOxRuOx-Pt/C e Pt/C. Em temperatura ambiente, os resultados de polarização potenciodinâmica mostraram uma maior atividade eletrocatalítica para o material SnOxRuOx-Pt/C, com eficiência de corrente para formação de CO2 de 15,6% contra 15,2% para Pt/C, sob condições estagnantes, sem controle por transporte de massa. O stripping de resíduos reacionais, após a eletro-oxidação de etanol bulk, sob condições de fluxo, mostraram o acúmulo de espécies com 1 átomo de carbono (CO e CHx) que causam o bloqueio dos sítios ativos e são oxidadas eletroquimicamente somente em mais altos potenciais (ca. 1,0 V). Por outro lado, as curvas de polarização a 245oC mostraram maiores valores de eficiências de correntes para formação de CO2 (45% para Pt/C em ambos potenciais 0,5 V e 0,8 V contra 36% e 50% para SnOxRuOx-Pt/C em 0,5 V e 0,8 V respectivamente) quando comparado com os valores obtidos em temperatura ambiente, mas com atividades similares para SnOxRuOx-Pt/C e Pt/C. Para ambos os eletrocatalisadores, os estudos de espectrometria de massas a 245oC evidenciaram que as rotas eletroquímicas ocorrem em paralelo com rotas puramente químicas, envolvendo catálise heterogênea, de decomposição do etanol, produzindo H2 e CO2 como produtos majoritários.
Resumo:
A beta-alumina de sódio é uma cerâmica condutora de íons Na+ utilizada como eletrólito sólido em baterias de sódio para armazenamento de energias intermitentes como energia solar e eólica. Devido ao alto teor de sódio, esse material é instável a altas temperaturas, podendo sofrer variações de composição durante a etapa de sinterização convencional que utiliza altas temperaturas por longos períodos de tempo. A sinterização flash é uma técnica de sinterização ativada por corrente elétrica que proporciona a densificação de compactos cerâmicos em poucos segundos, a temperaturas notavelmente mais baixas que as convencionais. Uma vez obrigatória a passagem de corrente elétrica através da amostra, a sinterização flash de qualquer material condutor parece bastante razoável. Não obstante, até o presente momento a maioria dos trabalhos publicados sobre o assunto aborda apenas condutores de vacância de oxigênio ou semicondutores, materiais compatíveis com eletrodos de platina (Pt). Nesse trabalho a sinterização flash de um condutor catiônico foi estudada utilizando-se a beta-alumina como material modelo. A beta-alumina foi sintetizada pelo método dos precursores poliméricos, caracterizada e então submetida à sinterização flash. O material de eletrodo padrão (platina) provou ser um eletrodo bloqueador em contato com a beta-alumina. O sucesso da sinterização flash foi determinado pela troca do material de eletrodo por prata (Ag), o que possibilitou uma reação eletroquímica reversível nas interfaces eletrodo-cerâmica e possibilitou a obtenção de um material densificado com morfologia e composição química homogêneas. Devido à metaestabilidade da beta-alumina, a atmosfera dos experimentos precisou ser alterada para manter a integridade desse material rico em um metal alcalino (Na+). A sinterização flash de um condutor catiônico é apresentada pela primeira vez na literatura e ressalta a importância da reação de eletrodo, que é um fator limitante para o sucesso da sinterização flash e precisa ser estudada e adaptada para cada tipo de material.