4 resultados para Nonlinear constrained optimization problems

em Biblioteca de Teses e Dissertações da USP


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho apresenta um método de estimativa de torque do joelho baseado em sinais eletromiográficos (EMG) durante terapia de reabilitação robótica. Os EMGs, adquiridos de cinco músculos envolvidos no movimento de flexão e extensão do joelho, são processados para encontrar as ativações musculares. Em seguida, mediante um modelo simples de contração muscular, são calculadas as forças e, usando a geometria da articulação, o torque do joelho. As funções de ativação e contração musculares possuem parâmetros limitados que devem ser calibrados para cada usuário, sendo o ajuste feito mediante a minimização do erro entre o torque estimado e o torque medido na articulação usando a dinâmica inversa. São comparados dois métodos iterativos para funções não-lineares como técnicas de otimização restrita para a calibração dos parâmetros: Gradiente Descendente e Quasi-Newton. O processamento de sinais, calibração de parâmetros e cálculo de torque estimado foram desenvolvidos no software MATLAB®; o cálculo de torque medido foi feito no software OpenSim com sua ferramenta de dinâmica inversa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O objetivo do presente trabalho é a investigação e o desenvolvimento de estratégias de otimização contínua e discreta para problemas de Fluxo de Potência Ótimo (FPO), onde existe a necessidade de se considerar as variáveis de controle associadas aos taps de transformadores em-fase e chaveamentos de bancos de capacitores e reatores shunt como variáveis discretas e existe a necessidade da limitação, e/ou até mesmo a minimização do número de ações de controle. Neste trabalho, o problema de FPO será abordado por meio de três estratégias. Na primeira proposta, o problema de FPO é modelado como um problema de Programação Não Linear com Variáveis Contínuas e Discretas (PNLCD) para a minimização de perdas ativas na transmissão; são propostas três abordagens utilizando funções de discretização para o tratamento das variáveis discretas. Na segunda proposta, considera-se que o problema de FPO, com os taps de transformadores discretos e bancos de capacitores e reatores shunts fixos, possui uma limitação no número de ações de controles; variáveis binárias associadas ao número de ações de controles são tratadas por uma função quadrática. Na terceira proposta, o problema de FPO é modelado como um problema de Otimização Multiobjetivo. O método da soma ponderada e o método ε-restrito são utilizados para modificar os problemas multiobjetivos propostos em problemas mono-objetivos. As variáveis binárias associadas às ações de controles são tratadas por duas funções, uma sigmoidal e uma polinomial. Para verificar a eficácia e a robustez dos modelos e algoritmos desenvolvidos serão realizados testes com os sistemas elétricos IEEE de 14, 30, 57, 118 e 300 barras. Todos os algoritmos e modelos foram implementados em General Algebraic Modeling System (GAMS) e os solvers CONOPT, IPOPT, KNITRO e DICOPT foram utilizados na resolução dos problemas. Os resultados obtidos confirmam que as estratégias de discretização são eficientes e as propostas de modelagem para variáveis binárias permitem encontrar soluções factíveis para os problemas envolvendo as ações de controles enquanto os solvers DICOPT e KNITRO utilizados para modelar variáveis binárias não encontram soluções.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O empacotamento irregular de fita é um grupo de problemas na área de corte e empacotamento, cuja aplicação é observada nas indústrias têxtil, moveleira e construção naval. O problema consiste em definir uma configuração de itens irregulares de modo que o comprimento do contêiner retangular que contém o leiaute seja minimizado. A solução deve ser válida, isto é, não deve haver sobreposição entre os itens, que não devem extrapolar as paredes do contêiner. Devido a aspectos práticos, são admitidas até quatro orientações para o item. O volume de material desperdiçado está diretamente relacionado à qualidade do leiaute obtido e, por este motivo, uma solução eficiente pressupõe uma vantagem econômica e resulta em um menor impacto ambiental. O objetivo deste trabalho consiste na geração automática de leiautes de modo a obter níveis de compactação e tempo de processamento compatíveis com outras soluções na literatura. A fim de atingir este objetivo, são realizadas duas propostas de solução. A primeira consiste no posicionamento sequencial dos itens de modo a maximizar a ocorrência de posições de encaixe, que estão relacionadas à restrição de movimento de um item no leiaute. Em linhas gerais, várias sequências de posicionamentos são exploradas com o objetivo de encontrar a solução mais compacta. Na segunda abordagem, que consiste na principal proposta deste trabalho, métodos rasterizados são aplicados para movimentar itens de acordo com uma grade de posicionamento, admitindo sobreposição. O método é baseado na estratégia de minimização de sobreposição, cujo objetivo é a eliminação da sobreposição em um contêiner fechado. Ambos os algoritmos foram testados utilizando o mesmo conjunto de problemas de referência da literatura. Foi verificado que a primeira estratégia não foi capaz de obter soluções satisfatórias, apesar de fornecer informações importantes sobre as propriedades das posições de encaixe. Por outro lado, a segunda abordagem obteve resultados competitivos. O desempenho do algoritmo também foi compatível com outras soluções, inclusive em casos nos quais o volume de dados era alto. Ademais, como trabalho futuro, o algoritmo pode ser estendido de modo a possibilitar a entrada de itens de geometria genérica, o que pode se tornar o grande diferencial da proposta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing economic competition drives the industry to implement tools that improve their processes efficiencies. The process automation is one of these tools, and the Real Time Optimization (RTO) is an automation methodology that considers economic aspects to update the process control in accordance with market prices and disturbances. Basically, RTO uses a steady-state phenomenological model to predict the process behavior, and then, optimizes an economic objective function subject to this model. Although largely implemented in industry, there is not a general agreement about the benefits of implementing RTO due to some limitations discussed in the present work: structural plant/model mismatch, identifiability issues and low frequency of set points update. Some alternative RTO approaches have been proposed in literature to handle the problem of structural plant/model mismatch. However, there is not a sensible comparison evaluating the scope and limitations of these RTO approaches under different aspects. For this reason, the classical two-step method is compared to more recently derivative-based methods (Modifier Adaptation, Integrated System Optimization and Parameter estimation, and Sufficient Conditions of Feasibility and Optimality) using a Monte Carlo methodology. The results of this comparison show that the classical RTO method is consistent, providing a model flexible enough to represent the process topology, a parameter estimation method appropriate to handle measurement noise characteristics and a method to improve the sample information quality. At each iteration, the RTO methodology updates some key parameter of the model, where it is possible to observe identifiability issues caused by lack of measurements and measurement noise, resulting in bad prediction ability. Therefore, four different parameter estimation approaches (Rotational Discrimination, Automatic Selection and Parameter estimation, Reparametrization via Differential Geometry and classical nonlinear Least Square) are evaluated with respect to their prediction accuracy, robustness and speed. The results show that the Rotational Discrimination method is the most suitable to be implemented in a RTO framework, since it requires less a priori information, it is simple to be implemented and avoid the overfitting caused by the Least Square method. The third RTO drawback discussed in the present thesis is the low frequency of set points update, this problem increases the period in which the process operates at suboptimum conditions. An alternative to handle this problem is proposed in this thesis, by integrating the classic RTO and Self-Optimizing control (SOC) using a new Model Predictive Control strategy. The new approach demonstrates that it is possible to reduce the problem of low frequency of set points updates, improving the economic performance. Finally, the practical aspects of the RTO implementation are carried out in an industrial case study, a Vapor Recompression Distillation (VRD) process located in Paulínea refinery from Petrobras. The conclusions of this study suggest that the model parameters are successfully estimated by the Rotational Discrimination method; the RTO is able to improve the process profit in about 3%, equivalent to 2 million dollars per year; and the integration of SOC and RTO may be an interesting control alternative for the VRD process.