3 resultados para Non-linear loads

em Biblioteca de Teses e Dissertações da USP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os smart grids representam a nova geração dos sistemas elétricos de potência, combinando avanços em computação, sistemas de comunicação, processos distribuídos e inteligência artificial para prover novas funcionalidades quanto ao acompanhamento em tempo real da demanda e do consumo de energia elétrica, gerenciamento em larga escala de geradores distribuídos, entre outras, a partir de um sistema de controle distribuído sobre a rede elétrica. Esta estrutura modifica profundamente a maneira como se realiza o planejamento e a operação de sistemas elétricos nos dias de hoje, em especial os de distribuição, e há interessantes possibilidades de pesquisa e desenvolvimento possibilitada pela busca da implementação destas funcionalidades. Com esse cenário em vista, o presente trabalho utiliza uma abordagem baseada no uso de sistemas multiagentes para simular esse tipo de sistema de distribuição de energia elétrica, considerando opções de controle distintas. A utilização da tecnologia de sistemas multiagentes para a simulação é baseada na conceituação de smart grids como um sistema distribuído, algo também realizado nesse trabalho. Para validar a proposta, foram simuladas três funcionalidades esperadas dessas redes elétricas: classificação de cargas não-lineares; gerenciamento de perfil de tensão; e reconfiguração topológica com a finalidade de reduzir as perdas elétricas. Todas as modelagens e desenvolvimentos destes estudos estão aqui relatados. Por fim, o trabalho se propõe a identificar os sistemas multiagentes como uma tecnologia a ser empregada tanto para a pesquisa, quanto para implementação dessas redes elétricas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the analysis of heart rate variability (HRV) are used temporal series that contains the distances between successive heartbeats in order to assess autonomic regulation of the cardiovascular system. These series are obtained from the electrocardiogram (ECG) signal analysis, which can be affected by different types of artifacts leading to incorrect interpretations in the analysis of the HRV signals. Classic approach to deal with these artifacts implies the use of correction methods, some of them based on interpolation, substitution or statistical techniques. However, there are few studies that shows the accuracy and performance of these correction methods on real HRV signals. This study aims to determine the performance of some linear and non-linear correction methods on HRV signals with induced artefacts by quantification of its linear and nonlinear HRV parameters. As part of the methodology, ECG signals of rats measured using the technique of telemetry were used to generate real heart rate variability signals without any error. In these series were simulated missing points (beats) in different quantities in order to emulate a real experimental situation as accurately as possible. In order to compare recovering efficiency, deletion (DEL), linear interpolation (LI), cubic spline interpolation (CI), moving average window (MAW) and nonlinear predictive interpolation (NPI) were used as correction methods for the series with induced artifacts. The accuracy of each correction method was known through the results obtained after the measurement of the mean value of the series (AVNN), standard deviation (SDNN), root mean square error of the differences between successive heartbeats (RMSSD), Lomb\'s periodogram (LSP), Detrended Fluctuation Analysis (DFA), multiscale entropy (MSE) and symbolic dynamics (SD) on each HRV signal with and without artifacts. The results show that, at low levels of missing points the performance of all correction techniques are very similar with very close values for each HRV parameter. However, at higher levels of losses only the NPI method allows to obtain HRV parameters with low error values and low quantity of significant differences in comparison to the values calculated for the same signals without the presence of missing points.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Os sistemas elétricos de potência modernos apresentam inúmeros desafios em sua operação. Nos sistemas de distribuição de energia elétrica, devido à grande ramificação, presença de extensos ramais monofásicos, à dinâmica das cargas e demais particularidades inerentes, a localização de faltas representa um dos maiores desafios. Das barreiras encontradas, a influência da impedância de falta é uma das maiores, afetando significativamente a aplicação dos métodos tradicionais na localização, visto que a magnitude das correntes de falta é similar à da corrente de carga. Neste sentido, esta tese objetivou desenvolver um sistema inteligente para localização de faltas de alta impedância, o qual foi embasado na aplicação da técnica de decomposição por componentes ortogonais no pré-processamento das variáveis e inferência fuzzy para interpretar as não-linearidades do Sistemas de Distribuição com presença de Geração Distribuída. Os dados para treinamento do sistema inteligente foram obtidos a partir de simulações computacionais de um alimentador real, considerando uma modelagem não-linear da falta de alta impedância. O sistema fuzzy resultante foi capaz de estimar as distâncias de falta com um erro absoluto médio inferior a 500 m e um erro absoluto máximo da ordem de 1,5 km, em um alimentador com cerca de 18 km de extensão. Tais resultados equivalem a um grau de exatidão, para a maior parte das ocorrências, dentro do intervalo de ±10%.