1 resultado para No-Fault Insurance.
em Biblioteca de Teses e Dissertações da USP
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (71)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (41)
- Boston College Law School, Boston College (BC), United States (1)
- Boston University Digital Common (2)
- Brock University, Canada (13)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (63)
- CentAUR: Central Archive University of Reading - UK (42)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (20)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (15)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Cornell: DigitalCommons@ILR (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (14)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Duke University (2)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (54)
- Instituto Politécnico do Porto, Portugal (7)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (7)
- Publishing Network for Geoscientific & Environmental Data (64)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (57)
- Queensland University of Technology - ePrints Archive (137)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (12)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (35)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (29)
- Universitat de Girona, Spain (12)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (17)
- University of Connecticut - USA (7)
- University of Michigan (43)
- WestminsterResearch - UK (1)
Resumo:
This research presents the development and implementation of fault location algorithms in power distribution networks with distributed generation units installed along their feeders. The proposed algorithms are capable of locating the fault based on voltage and current signals recorded by intelligent electronic devices installed at the end of the feeder sections, information to compute the loads connected to these feeders and their electric characteristics, and the operating status of the network. In addition, this work presents the study of analytical models of distributed generation and load technologies that could contribute to the performance of the proposed fault location algorithms. The validation of the algorithms was based on computer simulations using network models implemented in ATP, whereas the algorithms were implemented in MATLAB.