4 resultados para Model predictive control
em Biblioteca de Teses e Dissertações da USP
Resumo:
O sucesso de estratégias de controle preditivo baseado em modelo (MPC, na sigla em inglês) tanto em ambiente industrial quanto acadêmico tem sido marcante. No entanto, ainda há diversas questões em aberto na área, especialmente quando a hipótese simplificadora de modelo perfeito é abandonada. A consideração explícita de incertezas levou a importantes progressos na área de controle robusto, mas esta ainda apresenta alguns problemas: a alta demanda computacional e o excesso de conservadorismo são questões que podem ter prejudicado a aplicação de estratégias de controle robusto na prática. A abordagem de controle preditivo estocástico (SMPC, na sigla em inglês) busca a redução do conservadorismo através da incorporação de informação estatística dos ruídos. Como processos na indústria química sempre estão sujeito a distúrbios, seja devido a diferenças entre planta e modelo ou a distúrbios não medidos, está técnica surge como uma interessante alternativa para o futuro. O principal objetivo desta tese é o desenvolvimento de algoritmos de SMPC que levem em conta algumas das especificidades de tais processos, as quais não foram adequadamente tratadas na literatura até o presente. A contribuição mais importante é a inclusão de ação integral no controlador através de uma descrição do modelo em termos de velocidade. Além disso, restrições obrigatórias (hard) nas entradas associadas a limites físicos ou de segurança e restrições probabilísticas nos estados normalmente advindas de especificações de produtos também são consideradas na formulação. Duas abordagens foram seguidas neste trabalho, a primeira é mais direta enquanto a segunda fornece garantias de estabilidade em malha fechada, contudo aumenta o conservadorismo. Outro ponto interessante desenvolvido nesta tese é o controle por zonas de sistemas sujeitos a distúrbios. Essa forma de controle é comum na indústria devido à falta de graus de liberdade, sendo a abordagem proposta a primeira contribuição da literatura a unir controle por zonas e SMPC. Diversas simulações de todos os controladores propostos e comparações com modelos da literatura são exibidas para demonstrar o potencial de aplicação das técnicas desenvolvidas.
Resumo:
The increasing economic competition drives the industry to implement tools that improve their processes efficiencies. The process automation is one of these tools, and the Real Time Optimization (RTO) is an automation methodology that considers economic aspects to update the process control in accordance with market prices and disturbances. Basically, RTO uses a steady-state phenomenological model to predict the process behavior, and then, optimizes an economic objective function subject to this model. Although largely implemented in industry, there is not a general agreement about the benefits of implementing RTO due to some limitations discussed in the present work: structural plant/model mismatch, identifiability issues and low frequency of set points update. Some alternative RTO approaches have been proposed in literature to handle the problem of structural plant/model mismatch. However, there is not a sensible comparison evaluating the scope and limitations of these RTO approaches under different aspects. For this reason, the classical two-step method is compared to more recently derivative-based methods (Modifier Adaptation, Integrated System Optimization and Parameter estimation, and Sufficient Conditions of Feasibility and Optimality) using a Monte Carlo methodology. The results of this comparison show that the classical RTO method is consistent, providing a model flexible enough to represent the process topology, a parameter estimation method appropriate to handle measurement noise characteristics and a method to improve the sample information quality. At each iteration, the RTO methodology updates some key parameter of the model, where it is possible to observe identifiability issues caused by lack of measurements and measurement noise, resulting in bad prediction ability. Therefore, four different parameter estimation approaches (Rotational Discrimination, Automatic Selection and Parameter estimation, Reparametrization via Differential Geometry and classical nonlinear Least Square) are evaluated with respect to their prediction accuracy, robustness and speed. The results show that the Rotational Discrimination method is the most suitable to be implemented in a RTO framework, since it requires less a priori information, it is simple to be implemented and avoid the overfitting caused by the Least Square method. The third RTO drawback discussed in the present thesis is the low frequency of set points update, this problem increases the period in which the process operates at suboptimum conditions. An alternative to handle this problem is proposed in this thesis, by integrating the classic RTO and Self-Optimizing control (SOC) using a new Model Predictive Control strategy. The new approach demonstrates that it is possible to reduce the problem of low frequency of set points updates, improving the economic performance. Finally, the practical aspects of the RTO implementation are carried out in an industrial case study, a Vapor Recompression Distillation (VRD) process located in Paulínea refinery from Petrobras. The conclusions of this study suggest that the model parameters are successfully estimated by the Rotational Discrimination method; the RTO is able to improve the process profit in about 3%, equivalent to 2 million dollars per year; and the integration of SOC and RTO may be an interesting control alternative for the VRD process.
Estudo e implementação de sinais de excitação aplicados em identificação de sistemas multivariáveis.
Resumo:
Devido à crescente implementação do Controle Preditivo baseado em Modelo (MPC) em outros processos além de refino e plantas petroquímicas, que geralmente possuem múltiplas entradas e saídas, tem-se um aumento na demanda de modelos gerados por identificação de sistemas. Identificar modelos que representem fielmente a dinâmica do processo depende em grande medida das características dos sinais de excitação dos processos. Assim, o foco deste trabalho é realizar um estudo dos sinais típicos usados em identificação de sistemas, PRBS e GBN, em uma abordagem multivariável. O estudo feito neste trabalho parte das características da geração dos sinais individualmente, depois é feita uma análise de correlação cruzada dos sinais de entrada, observando a influência desta sobre os resultados de identificação. Evitar uma alta correlação entre os sinais de entrada permite determinar o efeito de cada entrada sobre a saída no processo de identificação. Um ponto importante no projeto de sinais de identificação de sistemas multivariáveis é a frequência dos mesmos para conseguir excitar os processos nas regiões de frequência de operação normal e assim extrair a maior informação dinâmica possível do processo. As características estudadas são avaliadas por meio de testes em três plantas simuladas diferentes, categorizadas como mal, medianamente e bem condicionadas. Estas implementações foram feitas usando sinais GBN e PRBS de diferentes frequências. Expressões para a caracterização dos sinais de excitação foram avaliadas identificando os processos em malha aberta e malha fechada. Para as plantas mal condicionadas foram implementados sinais compostos por uma parte completamente correlacionada e uma parte não-correlacionada, conhecido como método de dois passos. Finalmente são realizados experimentos de identificação em uma aplicação em tempo real de uma planta piloto de neutralização de pH. Os testes realizados na planta foram feitos visando avaliar os estudos de frequência e correlação em uma aplicaficção real. Os resultados mostram que a condição de sinais completamente descorrelacionados n~ao deve ser cumprida para ter bons resultados nos modelos identificados. Isto permite ter mais exibilidade na geração do conjunto de sinais de excitação.
Resumo:
Multibody System Dynamics has been responsible for revolutionizing Mechanical Engineering Design by using mathematical models to simulate and optimize the dynamic behavior of a wide range of mechanical systems. These mathematical models not only can provide valuable informations about a system that could otherwise be obtained only by experiments with prototypes, but also have been responsible for the development of many model-based control systems. This work represents a contribution for dynamic modeling of multibody mechanical systems by developing a novel recursive modular methodology that unifies the main contributions of several Classical Mechanics formalisms. The reason for proposing such a methodology is to motivate the implementation of computational routines for modeling complex multibody mechanical systems without being dependent on closed source software and, consequently, to contribute for the teaching of Multibody System Dynamics in undergraduate and graduate levels. All the theoretical developments are based on and motivated by a critical literature review, leading to a general matrix form of the dynamic equations of motion of a multibody mechanical system (that can be expressed in terms of any set of variables adopted for the description of motions performed by the system, even if such a set includes redundant variables) and to a general recursive methodology for obtaining mathematical models of complex systems given a set of equations describing the dynamics of each of its uncoupled subsystems and another set describing the constraints among these subsystems in the assembled system. This work also includes some discussions on the description of motion (using any possible set of motion variables and admitting any kind of constraint that can be expressed by an invariant), and on the conditions for solving forward and inverse dynamics problems given a mathematical model of a multibody system. Finally, some examples of computational packages based on the novel methodology, along with some case studies, are presented, highlighting the contributions that can be achieved by using the proposed methodology.