2 resultados para MASS ANALYZED LON KINETIC ENERGY SPECTROMETRY(MIKES)
em Biblioteca de Teses e Dissertações da USP
Resumo:
Devido ao esgotamento de recursos não renováveis e o aumento das preocupações sobre as alterações climáticas, a produção de combustível renovável a partir de microalgas continua a atrair muita a atenção devido ao seu potencial para taxas rápidas de crescimento, alto teor de óleo, capacidade de crescer em cenários não convencionais e a neutralidade de carbono, além de eliminar a preocupação da disputa com as culturas alimentares. Em virtude disso, torna-se importante o desenvolvimento de um processo de conversão das microalgas em gás combustível, em destaque o gás de síntese. Visando essa importância, estudou-se a reação de gaseificação da microalga Chlorella vulgaris através de experimentos de análise termogravimétrica para estimar os parâmetros cinéticos das reações e através da simulação de um modelo matemático dinâmico termoquímico do processo usando equações de conservação de massa e energia acoplados a cinética de reação. Análises termogravimétricas isotérmicas e dinâmicas foram realizadas usando dois diferentes tipos de modelos cinéticos: isoconversionais e reações paralelas independentes (RPI). Em ambos os modelos, os valores dos parâmetros cinéticos estimados apresentaram bons ajustes e permaneceram dentro daqueles encontrados na literatura. Também foram analisados os efeitos dos parâmetros cinéticos do modelo RPI sobre a conversão da microalga no intuito de observar quais mais se pronunciavam diante a variação de valores. Na etapa de simulação do sistema controlado pelo reator solar, o modelo matemático desenvolvido foi validado por meio da comparação dos valores de temperatura e concentrações de produtos obtidos medidos experimentalmente pela literatura, apresentando boa aproximação nos valores e viabilizando, juntamente com a etapa experimental de termogravimetria, a produção de gás de síntese através da gaseificação da microalga Chlorella vulgaris.
Resumo:
Esse trabalho constitui o desenvolvimento da modelagem térmica e simulação por métodos numéricos de dois componentes fundamentais do ciclo de refrigeração por absorção de calor com o par amônia/água: o absorvedor e o gerador. A função do absorvedor é produzir mistura líquida com alta fração mássica de amônia a partir de mistura líquida com baixa fração mássica de amônia e mistura vapor mediante retirada de calor. A função do gerador é produzir mistura líquido/vapor a partir de mistura líquida mediante o fornecimento de calor. É proposto o uso da tecnologia de filmes descendentes sobre placas inclinadas e o método de diferenças finitas para dividir o comprimento da placa em volumes de controle discretos e realizar os balanços de massa, espécie de amônia e energia juntamente com as equações de transferência de calor e massa para o filme descendente. O objetivo desse trabalho é obter um modelo matemático simplificado para ser utilizado em controle e otimização. Esse modelo foi utilizado para calcular as trocas de calor e massa no absorvedor e gerador para diversas condições a partir de dados operacionais, tais como: dimensões desses componentes, ângulo de inclinação da placa, temperatura de superfície e condições de entrada da fase líquida e vapor. Esses resultados foram utilizados para estabelecer relações de causa e efeito entre as variáveis e parâmetros do problema. Os resultados mostraram que o ângulo de inclinação da placa ótimo tanto para o absorvedor como para o gerador é a posição vertical, ou 90°. A posição vertical proporciona o menor comprimento de equilíbrio (0,85 m para o absorvedor e 1,27 m para o gerador com as condições testadas) e se mostrou estável, pois até 75° não foram verificadas variações no funcionamento do absorvedor e gerador. Dentre as condições testadas para uma placa de 0,5 m verificou-se que as maiores efetividades térmicas no absorvedor e gerador foram respectivamente 0,9 e 0,7 e as maiores efetividades mássicas no absorvedor e gerador foram respectivamente 0,6 e 0,5. É esperado que os dados obtidos sejam utilizados em trabalhos futuros para a construção de um protótipo laboratorial e na validação do modelo.