4 resultados para Lubrificação
em Biblioteca de Teses e Dissertações da USP
Resumo:
Friction in hydrodynamic bearings are a major source of losses in car engines ([69]). The extreme loading conditions in those bearings lead to contact between the matching surfaces. In such conditions not only the overall geometry of the bearing is relevant, but also the small-scale topography of the surface determines the bearing performance. The possibility of shaping the surface of lubricated bearings down to the micrometer ([57]) opened the question of whether friction can be reduced by mean of micro-textures, with mixed results. This work focuses in the development of efficient numerical methods to solve thin film (lubrication) problems down to the roughness scale of measured surfaces. Due to the high velocities and the convergent-divergent geometries of hydrodynamic bearings, cavitation takes place. To treat cavitation in the lubrication problem the Elrod- Adams model is used, a mass-conserving model which has proven in careful numerical ([12]) and experimental ([119]) tests to be essential to obtain physically meaningful results. Another relevant aspect of the modeling is that the bearing inertial effects are considered, which is necessary to correctly simulate moving textures. As an application, the effects of micro-texturing the moving surface of the bearing were studied. Realistic values are assumed for the physical parameters defining the problems. Extensive fundamental studies were carried out in the hydrodynamic lubrication regime. Mesh-converged simulations considering the topography of real measured surfaces were also run, and the validity of the lubrication approximation was assessed for such rough surfaces.
Resumo:
The present thesis is focused on the development of a thorough mathematical modelling and computational solution framework aimed at the numerical simulation of journal and sliding bearing systems operating under a wide range of lubrication regimes (mixed, elastohydrodynamic and full film lubrication regimes) and working conditions (static, quasi-static and transient conditions). The fluid flow effects have been considered in terms of the Isothermal Generalized Equation of the Mechanics of the Viscous Thin Films (Reynolds equation), along with the massconserving p-Ø Elrod-Adams cavitation model that accordingly ensures the so-called JFO complementary boundary conditions for fluid film rupture. The variation of the lubricant rheological properties due to the viscous-pressure (Barus and Roelands equations), viscous-shear-thinning (Eyring and Carreau-Yasuda equations) and density-pressure (Dowson-Higginson equation) relationships have also been taken into account in the overall modelling. Generic models have been derived for the aforementioned bearing components in order to enable their applications in general multibody dynamic systems (MDS), and by including the effects of angular misalignments, superficial geometric defects (form/waviness deviations, EHL deformations, etc.) and axial motion. The bearing exibility (conformal EHL) has been incorporated by means of FEM model reduction (or condensation) techniques. The macroscopic in fluence of the mixedlubrication phenomena have been included into the modelling by the stochastic Patir and Cheng average ow model and the Greenwood-Williamson/Greenwood-Tripp formulations for rough contacts. Furthermore, a deterministic mixed-lubrication model with inter-asperity cavitation has also been proposed for full-scale simulations in the microscopic (roughness) level. According to the extensive mathematical modelling background established, three significant contributions have been accomplished. Firstly, a general numerical solution for the Reynolds lubrication equation with the mass-conserving p - Ø cavitation model has been developed based on the hybridtype Element-Based Finite Volume Method (EbFVM). This new solution scheme allows solving lubrication problems with complex geometries to be discretized by unstructured grids. The numerical method was validated in agreement with several example cases from the literature, and further used in numerical experiments to explore its exibility in coping with irregular meshes for reducing the number of nodes required in the solution of textured sliding bearings. Secondly, novel robust partitioned techniques, namely: Fixed Point Gauss-Seidel Method (PGMF), Point Gauss-Seidel Method with Aitken Acceleration (PGMA) and Interface Quasi-Newton Method with Inverse Jacobian from Least-Squares approximation (IQN-ILS), commonly adopted for solving uid-structure interaction problems have been introduced in the context of tribological simulations, particularly for the coupled calculation of dynamic conformal EHL contacts. The performance of such partitioned methods was evaluated according to simulations of dynamically loaded connecting-rod big-end bearings of both heavy-duty and high-speed engines. Finally, the proposed deterministic mixed-lubrication modelling was applied to investigate the in fluence of the cylinder liner wear after a 100h dynamometer engine test on the hydrodynamic pressure generation and friction of Twin-Land Oil Control Rings.
Resumo:
Superfícies anisotrópicas lisas e rugosas foram usadas para avaliar o efeito da rugosidade e da direção de acabamento na formação de MoS2 a partir de MoDTC em ensaios tribologicos lubrificados com óleos de motor completamente formulados. Igualmente foi avaliada a resposta de atrito de lubrificantes de motor usados em carros de passageiros e em testes de dinamômetro abastecidos com etanol (E100) e gasolina (E22). Encontrou-se que tanto a direção de acabamento quanto a rugosidade foram fundamentais na reação MoDTC - MoS2. A direção de acabamento influenciou na medida que carregamentos tangenciais geram respostas diferentes nos ensaios quando são realizados paralelos e perpendiculares às linhas de acabamento, dado que para os últimos apresenta-se maior deformação plástica das asperezas, o qual favorece a obtenção de superfícies livres de óxidos, que tem sido indicada como uma condição necessário para que aconteça a reação MoDTC - MoS2. Por esta razão os valores de coeficiente de atrito próprios da formação de MoS2 foram obtidos somente nas superfícies rugosas ensaiadas perpendiculares às marcas de acabamento. Para superfícies com valores de índice de plasticidade superiores a 1 e nos quais não são formados filmes com boas capacidades redutoras de atrito, como é o caso de ensaios realizados com óleos base (livres de aditivos), o coeficiente de atrito não depende da rugosidade e da direção de acabamento. Nos ensaios lubrificados com óleos usado, encontraram-se valores de coeficiente de atrito similares aos obtidos nas condições de lubrificação com óleo livres de aditivos, devido provavelmente à redução do MoDTC no lubrificante como tem sido identificado por diferentes autores. Quando foram comparados os óleos usados contaminados com etanol com os óleos usados contaminados com gasolina, encontrou-se maior oxidação nestes últimos. Mesmo que estas diferenças de oxidação dos óleos não significaram diferenças em termos de atrito, estas podem ser importantes na medida em que óleos mais oxidados podem favorecer o desgaste oxidativo.
Resumo:
Este trabalho apresenta uma discussão sobre o estudo dos efeitos térmicos e elásticos decorrentes da pressão de sustentação presentes nos mancais. Para tanto, propõe-se um modelo matemático baseado nas equações para mancais curtos considerando a região de cavitação e utilizando o princípio da continuidade de massa. Com isto, deduzem-se as equações para o mancal a partir das equações de Reynolds e da energia, aplicando uma solução modificada para a solução de Ocvirk, sendo as equações resolvidas numericamente pelo Método das Diferenças Finitas. Somado o tratamento de mecânica dos fluidos, o trabalho discute dois modelos térmicos de previsão de temperatura média do fluido e sua influência no campo de pressão, apresentando gráficos representativos do campo de pressão e de temperatura, assim como as diferenças e implicações das diferenças. Para o cálculo de deformação da estrutura, utiliza-se um Modelo de Elementos Finitos para uma dada geometria, fazendo-se uma avaliação da variação do campo de pressão e o quanto essa diferença afeta as demais propriedades do fluido. Por fim, com o modelo completo, calcula-se o quanto esse modelamento para mancais curtos se aproxima de soluções para mancais finitos, com base em resultados da literatura, chegando a desvios quase oito vezes menores que os previstos pela literatura. Além disso, pode-se estabelecer a abrangência do modelo, ou seja, prever as condições em que suas propriedades são válidas e podem ser utilizadas para estudos iniciais.