3 resultados para Low-molecular-weight
em Biblioteca de Teses e Dissertações da USP
Resumo:
A baixa eficiência da adubação fosfatada em solos altamente intemperizados é devido, entre outros fatores, à adsorção do fósforo (P) à superfície das argilas silicatadas do tipo 1:1 e, principalmente, dos (hidr)óxidos de Fe e de Al. Manejos do solo que induzem a solubilização de formas de P indisponíveis para as plantas têm sido intensamente estudados nos últimos anos. Uma tentativa de aumentar a concentração de P disponível na solução do solo para sua absorção pelas plantas é a mobilização de P por ânions de ácidos orgânicos de baixa massa molar (AOBMM). Ânions derivados de AOBMM exsudados pelas raízes de plantas ou excretados por microrganismos são associados com algumas condições de rizosfera como deficiência de P e fitotoxidez de Al e interagem com o solo de forma a aumentar a biodisponibilidade de P. Dependendo dos atributos do solo, do grau de dissociação, das propriedades e do número de grupos carboxílicos dos ânions orgânicos, o P pode ser mobilizado do solo principalmente devido à dissolução complexométrica de minerais e à adsorção competitiva dos grupos funcionais carboxílicos e fosfato nos sítios de superfície coloidais. A capacidade dos ânions citrato, malato e oxalato em mobilizar P de amostras de um Neossolo Quartzarênico típico (RQ) e de um Latossolo Vermelho ácrico (LVwf) foi avaliada por meio de um estudo de lixiviação de ânions em colunas. Devido a não detecção de P nos efluentes das colunas com LVwf, foi realizado outro estudo em colunas, no qual somente citrato foi lixiviado, mas num volume maior, e as alterações das formas de P nas amostras desse solo induzidas pela lixiviação de citrato foram identificadas por espectroscopia de absorção de raios-X na borda K do fósforo (X-ray absorption near edge structure -XANES - spectroscopy). A capacidade dos ânions de AOBMM em solubilizar P foi mais dependente do teor de P disponível e de outros atributos do solo que do número de grupos funcionais carboxílicos dos ânions orgânicos. Somente o oxalato mobilizou P do RQ, enquanto todos os ânions de AOBMM foram capazes de mobilizar P do LVwf. Quando baixos volumes de solução contendo ânions de AOBMM foram lixiviados no solo, além do aumento do pH, a mobilização de P foi acompanhada pela mobilização de Al no RQ (pH água = 5), e pela mobilização de Ca no LVwf (pH água = 5.6), o que indica solubilização de P pela complexação de Al, Ca, ou Fe, de fosfatos insolúveis, ou pela inibição da precipitação de P com esses metais. Ao lixiviar um volume maior de citrato no LVwf, o P também não foi detectado nos efluentes das colunas, mas houve lixiviação intensa de Al e Fe, bem como mudanças nas proporções de formas de P no solo caracterizadas pelos espectros XANES. Embora tenhamos encontrado indícios da ação dos principais mecanismos de solubilização de P (dissolução complexométrica de minerais e troca de ligantes entre grupos funcionais carboxílicos e P adsorvido ao solo), os ânions de AOBMM mostraram pouco potencial de efetivamente aumentar a biodisponibilidade de P.
Resumo:
A unidade de coqueamento retardado é um processo térmico de conversão, utilizado pelas refinarias, para converter cargas residuais em produtos de baixo peso molecular e com alto valor agregado (gases, nafta e gasóleo) e coque verde de petróleo. Um pequeno aumento no rendimento líquido da unidade de coqueamento retardado proporciona benefícios económicos consideráveis, especialmente no destilado líquido. A concorrência no mercado, as restrições sobre as especificações do produto e gargalos operacionais exigem um melhor planejamento da produção. Portanto, o desenvolvimento de novas estratégias e modelos matemáticos, focados em melhores condições de operação do processo industrial e formulações de produtos, é essencial para alcançar melhores rendimentos e um acompanhamento mais preciso da qualidade do produto. Este trabalho tem como objetivo o desenvolvimento de modelo matemático do conjunto forno-reator do processo de coqueamento, a partir de informações obtidas em uma planta industrial. O modelo proposto é baseado na caracterização da carga e dos produtos em pseudocomponentes, modelos cinéticos de grupos e condições de equilíbrio liquido-vapor. Além disso, são discutidos os principais desafios para o desenvolver o modelo matemático do forno e do reator, bem como a caracterização rigorosa do resíduo de vácuo e dos produtos para determinar os parâmetros que afetam a morfologia do coque e a zona de reação no interior do reator de coque.
Resumo:
Este trabalho teve como principal objetivo produzir membranas porosas de carboximetilquitosana e hidrogéis de quitosana com propriedades físico-químicas e mecânicas adequadas para aplicações em Engenharia de Tecidos. Para isso, quitosanas com diferentes graus de acetilação (4,0%<GA<40%) e de elevada massa molar média viscosimétrica (Mv>750.000 g.mol-1) foram produzidas através da aplicação de processos consecutivos de desacetilação assistida por irradiação de ultrassom de alta intensidade (DAIUS) à beta-quitina extraída de gládios de lulas Doryteuthis spp. A carboximetilação de quitosana extensivamente desacetilada (Qs-3; GA=4%) foi realizada pela reação com ácido monocloroacético em meio isopropanol/solução aquosa de NaOH, gerando a amostra CMQs-0 (GS≈0,98; Mv≈190.000 g.mol-1). A irradiação de ultrassom de alta intensidade foi empregada para tratar solução aquosa de CMQs-0 durante 1 h e 3 h, resultando nas amostras CMQs-1 (Mv≈94.000 g.mol-1) e CMQs-3 (Mv≈43.000 g.mol-1), respectivamente. Para a produção de membranas reticuladas, genipina foi adicionada em diferentes concentrações (1,0x10-4 mol.L-1, 3,0x10-4 mol.L-1 ou 5,0x10-4 mol.L-1) às soluções aquosas das CMQs, que foram vertidas em placas de Petri e a reação de reticulação procedeu por 24 h. Em seguida, as membranas reticuladas (M-CMQs) foram liofilizadas, neutralizadas, lavadas e liofilizadas novamente, resultando em nove amostras, que foram caracterizadas quanto ao grau médio de reticulação (GR), grau médio de hidratação (GH), morfologia, propriedades mecânicas e quanto à susceptibilidade à degradação por lisozima. O grau médio de reticulação (GR) foi tanto maior quanto maior a concentração de genipina empregada na reação, variando de GR≈3,3% (M-CMQs-01) a GR≈17,8% (M-CMQs-35). As análises de MEV revelaram que as membranas reticuladas M-CMQs são estruturas porosas que apresentam maior densidade de poros aparentes quanto maiores os valores de Mve GR. Entretanto, as membranas preparadas a partir de CMQs de elevada massa molar (Mv>94.000 g.mol-1) e pouco reticuladas (GR<10%), apresentaram propriedades mecânicas superiores em termos de resistência máxima à tração (>170 kPa) e elongação máxima à ruptura (>40%). Por outro lado, as membranas mais susceptíveis à degradação enzimática foram aquelas preparadas a partir de CMQs de baixa massa molar (Mv≈43.000 g.mol-1) e que exibiram baixos graus de reticulação (GR<11%). Hidrogéis estáveis de quitosana sem o uso de qualquer agente de reticulação externo foram produzidos a partir da gelificação de soluções aquosas de quitosana com solução de NaOH ou vapor de NH3. Os hidrogéis produzidos a partir de soluções de quitosana de elevada massa molar média ponderal (Mw≈640.000 g.mol-1) e extensivamente desacetilada (DA≈2,8%) em concentrações poliméricas acima 2,0%, exibiram melhores propriedades mecânicas com o aumento da concentração polimérica, devido à formação de numerosos emaranhamentos físicos das cadeias poliméricas em solução. Os resultados mostram que as propriedades físico-químicas e mecânicas dos hidrogéis de quitosana podem ser controladas variando a concentração do polímero e o processo de gelificação. A avaliação biológica de tais hidrogéis para a regeneração de miocárdio infartado de ratos revelou que os hidrogéis de quitosana preparados a partir de soluções de polímero a 1,5% foram perfeitamente incorporados sobre a superfície do epicárdio do coração e apresentaram degradação parcial acompanhada por infiltração de células mononucleares.