5 resultados para Least-squares support vector machine

em Biblioteca de Teses e Dissertações da USP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os motores de indução desempenham um importante papel na indústria, fato este que destaca a importância do correto diagnóstico e classificação de falhas ainda em fase inicial de sua evolução, possibilitando aumento na produtividade e, principalmente, eliminando graves danos aos processos e às máquinas. Assim, a proposta desta tese consiste em apresentar um multiclassificador inteligente para o diagnóstico de motor sem defeitos, falhas de curto-circuito nos enrolamentos do estator, falhas de rotor e falhas de rolamentos em motores de indução trifásicos acionados por diferentes modelos de inversores de frequência por meio da análise das amplitudes dos sinais de corrente de estator no domínio do tempo. Para avaliar a precisão de classificação frente aos diversos níveis de severidade das falhas, foram comparados os desempenhos de quatro técnicas distintas de aprendizado de máquina; a saber: (i) Rede Fuzzy Artmap, (ii) Rede Perceptron Multicamadas, (iii) Máquina de Vetores de Suporte e (iv) k-Vizinhos-Próximos. Resultados experimentais obtidos a partir de 13.574 ensaios experimentais são apresentados para validar o estudo considerando uma ampla faixa de frequências de operação, bem como regimes de conjugado de carga em 5 motores diferentes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os motores de indução trifásicos são os principais elementos de conversão de energia elétrica em mecânica motriz aplicados em vários setores produtivos. Identificar um defeito no motor em operação pode fornecer, antes que ele falhe, maior segurança no processo de tomada de decisão sobre a manutenção da máquina, redução de custos e aumento de disponibilidade. Nesta tese são apresentas inicialmente uma revisão bibliográfica e a metodologia geral para a reprodução dos defeitos nos motores e a aplicação da técnica de discretização dos sinais de correntes e tensões no domínio do tempo. É também desenvolvido um estudo comparativo entre métodos de classificação de padrões para a identificação de defeitos nestas máquinas, tais como: Naive Bayes, k-Nearest Neighbor, Support Vector Machine (Sequential Minimal Optimization), Rede Neural Artificial (Perceptron Multicamadas), Repeated Incremental Pruning to Produce Error Reduction e C4.5 Decision Tree. Também aplicou-se o conceito de Sistemas Multiagentes (SMA) para suportar a utilização de múltiplos métodos concorrentes de forma distribuída para reconhecimento de padrões de defeitos em rolamentos defeituosos, quebras nas barras da gaiola de esquilo do rotor e curto-circuito entre as bobinas do enrolamento do estator de motores de indução trifásicos. Complementarmente, algumas estratégias para a definição da severidade dos defeitos supracitados em motores foram exploradas, fazendo inclusive uma averiguação da influência do desequilíbrio de tensão na alimentação da máquina para a determinação destas anomalias. Os dados experimentais foram adquiridos por meio de uma bancada experimental em laboratório com motores de potência de 1 e 2 cv acionados diretamente na rede elétrica, operando em várias condições de desequilíbrio das tensões e variações da carga mecânica aplicada ao eixo do motor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uma imagem engloba informação que precisa ser organizada para interpretar e compreender seu conteúdo. Existem diversas técnicas computacionais para extrair a principal informação de uma imagem e podem ser divididas em três áreas: análise de cor, textura e forma. Uma das principais delas é a análise de forma, por descrever características de objetos baseadas em seus pontos fronteira. Propomos um método de caracterização de imagens, por meio da análise de forma, baseada nas propriedades espectrais do laplaciano em grafos. O procedimento construiu grafos G baseados nos pontos fronteira do objeto, cujas conexões entre vértices são determinadas por limiares T_l. A partir dos grafos obtêm-se a matriz de adjacência A e a matriz de graus D, as quais definem a matriz Laplaciana L=D -A. A decomposição espectral da matriz Laplaciana (autovalores) é investigada para descrever características das imagens. Duas abordagens são consideradas: a) Análise do vetor característico baseado em limiares e a histogramas, considera dois parâmetros o intervalo de classes IC_l e o limiar T_l; b) Análise do vetor característico baseado em vários limiares para autovalores fixos; os quais representam o segundo e último autovalor da matriz L. As técnicas foram testada em três coleções de imagens: sintéticas (Genéricas), parasitas intestinais (SADPI) e folhas de plantas (CNShape), cada uma destas com suas próprias características e desafios. Na avaliação dos resultados, empregamos o modelo de classificação support vector machine (SVM), o qual avalia nossas abordagens, determinando o índice de separação das categorias. A primeira abordagem obteve um acerto de 90 % com a coleção de imagens Genéricas, 88 % na coleção SADPI, e 72 % na coleção CNShape. Na segunda abordagem, obtém-se uma taxa de acerto de 97 % com a coleção de imagens Genéricas; 83 % para SADPI e 86 % no CNShape. Os resultados mostram que a classificação de imagens a partir do espectro do Laplaciano, consegue categorizá-las satisfatoriamente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A anotação geográfica de documentos consiste na adoção de metadados para a identificação de nomes de locais e a posição de suas ocorrências no texto. Esta informação é útil, por exemplo, para mecanismos de busca. A partir dos topônimos mencionados no texto é possível identificar o contexto espacial em que o assunto do texto está inserido, o que permite agrupar documentos que se refiram a um mesmo contexto, atribuindo ao documento um escopo geográfico. Esta Dissertação de Mestrado apresenta um novo método, batizado de Geofier, para determinação do escopo geográfico de documentos. A novidade apresentada pelo Geofier é a possibilidade da identificação do escopo geográfico de um documento por meio de classificadores de aprendizagem de máquina treinados sem o uso de um gazetteer e sem premissas quanto à língua dos textos analisados. A Wikipédia foi utilizada como fonte de um conjunto de documentos anotados geograficamente para o treinamento de uma hierarquia de Classificadores Naive Bayes e Support Vector Machines (SVMs). Uma comparação de desempenho entre o Geofier e uma reimplementação do sistema Web-a-Where foi realizada em relação à determinação do escopo geográfico dos textos da Wikipédia. A hierarquia do Geofier foi treinada e avaliada de duas formas: usando topônimos do mesmo gazetteer que o Web-a-Where e usando n-gramas extraídos dos documentos de treinamento. Como resultado, o Geofier manteve desempenho superior ao obtido pela reimplementação do Web-a-Where.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta uma análise de algoritmos computacionais aplicados à estimação de fasores elétricos em SEPs. A medição dos fasores é realizada por meio da alocação de Unidades de Medição Fasorial nestes sistemas e encontra diversas aplicações nas áreas de operação, controle, proteção e planejamento. Para que os fasores possam ser aplicados, são definidos padrões de medição, sincronização e comunicação, por meio da norma IEEE C37.118.1. A norma apresenta os padrões de mensagens, timetag, fasores, sistema de sincronização, e define testes para avaliar a estimação. Apesar de abranger todos esses critérios, a diretriz não define um algoritmo de estimação padrão, abrindo espaço para uso de diversos métodos, desde que a precisão seja atendida. Nesse contexto, o presente trabalho analisa alguns algoritmos de estimação de fasores definidos na literatura, avaliando o comportamento deles em determinados casos. Foram considerados, dessa forma, os métodos: Transformada Discreta de Fourier, Método dos Mínimos Quadrados e Transformada Wavelet Discreta, nas versões recursivas e não-recursivas. Esses métodos foram submetidos a sinais sintéticos, a fim de verificar o comportamento diante dos testes propostos pela norma, avaliando o Total Vector Error, tempo de resposta e atraso e overshoot. Os algoritmos também foram embarcados em um hardware, denominado PC104, e avaliados de acordo com os sinais medidos pelo equipamento na saída analógica de um simulador em tempo real (Real Time Digital Simulator).