2 resultados para Infiltração

em Biblioteca de Teses e Dissertações da USP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho teve como principal objetivo produzir membranas porosas de carboximetilquitosana e hidrogéis de quitosana com propriedades físico-químicas e mecânicas adequadas para aplicações em Engenharia de Tecidos. Para isso, quitosanas com diferentes graus de acetilação (4,0%<GA<40%) e de elevada massa molar média viscosimétrica (Mv>750.000 g.mol-1) foram produzidas através da aplicação de processos consecutivos de desacetilação assistida por irradiação de ultrassom de alta intensidade (DAIUS) à beta-quitina extraída de gládios de lulas Doryteuthis spp. A carboximetilação de quitosana extensivamente desacetilada (Qs-3; GA=4%) foi realizada pela reação com ácido monocloroacético em meio isopropanol/solução aquosa de NaOH, gerando a amostra CMQs-0 (GS≈0,98; Mv≈190.000 g.mol-1). A irradiação de ultrassom de alta intensidade foi empregada para tratar solução aquosa de CMQs-0 durante 1 h e 3 h, resultando nas amostras CMQs-1 (Mv≈94.000 g.mol-1) e CMQs-3 (Mv≈43.000 g.mol-1), respectivamente. Para a produção de membranas reticuladas, genipina foi adicionada em diferentes concentrações (1,0x10-4 mol.L-1, 3,0x10-4 mol.L-1 ou 5,0x10-4 mol.L-1) às soluções aquosas das CMQs, que foram vertidas em placas de Petri e a reação de reticulação procedeu por 24 h. Em seguida, as membranas reticuladas (M-CMQs) foram liofilizadas, neutralizadas, lavadas e liofilizadas novamente, resultando em nove amostras, que foram caracterizadas quanto ao grau médio de reticulação (GR), grau médio de hidratação (GH), morfologia, propriedades mecânicas e quanto à susceptibilidade à degradação por lisozima. O grau médio de reticulação (GR) foi tanto maior quanto maior a concentração de genipina empregada na reação, variando de GR≈3,3% (M-CMQs-01) a GR≈17,8% (M-CMQs-35). As análises de MEV revelaram que as membranas reticuladas M-CMQs são estruturas porosas que apresentam maior densidade de poros aparentes quanto maiores os valores de Mve GR. Entretanto, as membranas preparadas a partir de CMQs de elevada massa molar (Mv>94.000 g.mol-1) e pouco reticuladas (GR<10%), apresentaram propriedades mecânicas superiores em termos de resistência máxima à tração (>170 kPa) e elongação máxima à ruptura (>40%). Por outro lado, as membranas mais susceptíveis à degradação enzimática foram aquelas preparadas a partir de CMQs de baixa massa molar (Mv≈43.000 g.mol-1) e que exibiram baixos graus de reticulação (GR<11%). Hidrogéis estáveis de quitosana sem o uso de qualquer agente de reticulação externo foram produzidos a partir da gelificação de soluções aquosas de quitosana com solução de NaOH ou vapor de NH3. Os hidrogéis produzidos a partir de soluções de quitosana de elevada massa molar média ponderal (Mw≈640.000 g.mol-1) e extensivamente desacetilada (DA≈2,8%) em concentrações poliméricas acima 2,0%, exibiram melhores propriedades mecânicas com o aumento da concentração polimérica, devido à formação de numerosos emaranhamentos físicos das cadeias poliméricas em solução. Os resultados mostram que as propriedades físico-químicas e mecânicas dos hidrogéis de quitosana podem ser controladas variando a concentração do polímero e o processo de gelificação. A avaliação biológica de tais hidrogéis para a regeneração de miocárdio infartado de ratos revelou que os hidrogéis de quitosana preparados a partir de soluções de polímero a 1,5% foram perfeitamente incorporados sobre a superfície do epicárdio do coração e apresentaram degradação parcial acompanhada por infiltração de células mononucleares.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No Estado de São Paulo, a maioria dos poços profundos perfurados localiza-se em terrenos sedimentares. Assim sendo foi realizado este trabalho a fim de verificar a aplicabilidade de métodos geofísicos à procura de água subterrânea no Estado. A água da chuva atingindo a superfície do terreno toma caminhos a saber: evaporação, escoamento e infiltração. Em face da porosidade, permeabilidade e força da gravidade, a água de infiltração toma o caminho descendente até: - atingir uma zona permeável (saturada ou não) e seu fluxo. - atingir uma rocha sedimentar impermeável ou rocha ígnea sã. - saturar fissuras existentes em rochas ígneas sãs. Basicamente que um poço seja produtor de água, é necessária a extração de água acumulada nas seguintes condições: 1- água acumulada em rochas permeáveis saturadas. 2- água acumulada em fissuras de rochas ígneas sãs. 3- água acumulada em depressões existentes ou na superfície de rochas ígneas ou do embasamento cristalino, coberto por rochas porosas e permeáveis. Baseado nestas formas de ocorrência de água subterrânea, as pesquisas de campo foram orientadas no sentido de: - identificar pela interpretação das curvas ou mesmo uma curva de sondagem elétrica, aquela camada aqüífera, saturada de água e já conhecida \"a priori\" como aqüífero, bem como estabelecer a sua profundidade, espessura e comportamento geológico. - verificar a profundidade do nível freático. - mapear a superfície do embasamento cristalino, procurando achar nela, depressões causa das por erosões pretéritas. Procurou-se verificar também: até que ponto, em um dado local uma estratigrafia geológica conhecida, corresponde a uma \"estratigrafia geofísica\" obtida por medidas na superfície. - determinar a resistividade, ou resistividades, das diferentes formações litológicas. - procurar correlacionar variações laterais de resistividade de uma certa camada geológica com as variações na sua granulometria e litologia ou sais ) dissolvidos na solução que a satura. De um modo geral a eletrorresistividade fornece bons resultados quando aplicada à procura de água subterrânea no Estado de São Paulo. Nos sedimentos do Grupo Tubarão (Permo-Carbonífero) verifica-se uma correspondência entre altos valores de resistividade e as altas vazões dos poços (vazão específica). A \"estratigrafia geofísica\" obtida corresponde muito bem à estratigrafia geológica. Espessuras dos derrames de basalto (Eocretáceo), intrusões de diabásio, arenito da Série Bauru (Neocretáceo), arenito da Formação Botucatu (Eocretáceo), sedimentos do Grupo Tubarão (Permo-Carbonífero) e camadas de sedimentos recentes são facilmente determinadas. Na região da Praia Grande existem lençóis de água doce sobrejazendo à água salobra e salgada.