3 resultados para Image processing -- Digital techniques -- Mathematical models

em Biblioteca de Teses e Dissertações da USP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho apresenta uma alternativa ao processo de classificação do defeito da segregação central em amostras de aço, utilizando as imagens digitais que são geradas durante o ensaio de Baumann. O algoritmo proposto tem como objetivo agregar as técnicas de processamento digital de imagens e o conhecimento dos especialistas sobre o defeito da segregação central, visando a classificação do defeito de referência. O algoritmo implementado inclui a identificação e a segmentação da linha segregada por meio da aplicação da transformada de Hough e limiar adaptativo. Adicionalmente, o algoritmo apresenta uma proposta para o mapeamento dos atributos da segregação central nos diferentes graus de severidade do defeito, em função dos critérios de continuidade e intensidade. O mapeamento foi realizado por meio da análise das características individuais, como comprimento, largura e área, dos elementos segmentados que compõem a linha segregada. A avaliação do desempenho do algoritmo foi realizada em dois momentos específicos, de acordo com sua fase de implementação. Para a realização da avaliação, foram analisadas 255 imagens de amostras reais, oriundas de duas usinas siderúrgicas, distribuídas nos diferentes graus de severidade. Os resultados da primeira fase de implementação mostram que a identificação da linha segregada apresenta acurácia de 93%. As classificações oriundas do mapeamento realizado para as classes de criticidade do defeito, na segunda fase de implementação, apresentam acurácia de 92% para o critério de continuidade e 68% para o critério de intensidade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assunto bastante abordado quando se trata de Sistemas Inteligentes de Transportes (ITS), a identificação veicular - utilizada em grande parte das aplicações de ITS deve ser entendida como um conjunto de recursos de hardware, software e telecomunicações, que interagem para atingir, do ponto de vista funcional, o objetivo de, conseguir extrair e transmitir, digitalmente, a identidade de um veículo. É feita tanto por sistemas que transmitem e recebem uma identidade digital quanto por sistemas que, instalados na infraestrutura da via, são capazes de reconhecer a placa dos veículos circulantes. Quando se trata da identificação automática por meio do reconhecimento da placa veicular, os estudos têm se concentrado sobremaneira nas tecnologias de processamento de imagens, não abordando - em sua maioria - uma visão sistêmica, necessária para compreender de maneira mais abrangente todas as variáveis que podem interferir na eficácia da identificação. Com o objetivo de contribuir para melhor entender e utilizar os sistemas de reconhecimento automático de placas veiculares, este trabalho propõe um modelo sistêmico, em camadas, para representar seus componentes. Associada a esse modelo, propõe uma classificação para os diversos tipos de falhas que podem prejudicar seu desempenho. Uma análise desenvolvida com resultados obtidos em testes realizados em campo com sistemas de identificação de placas voltados à fiscalização de veículos aponta resultados relevantes e limitações para obter correlações entre variáveis, em função dos diversos fatores que podem influenciar os resultados. Algumas entrevistas realizadas apontam os tipos de falhas que ocorrem com mais frequência durante a operação desses sistemas. Finalmente, este trabalho propõe futuros estudos e apresenta um glossário de termos, que poderá ser útil a novos pesquisadores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A aquisição experimental de sinais neuronais é um dos principais avanços da neurociência. Por meio de observações da corrente e do potencial elétricos em uma região cerebral, é possível entender os processos fisiológicos envolvidos na geração do potencial de ação, e produzir modelos matemáticos capazes de simular o comportamento de uma célula neuronal. Uma prática comum nesse tipo de experimento é obter leituras a partir de um arranjo de eletrodos posicionado em um meio compartilhado por diversos neurônios, o que resulta em uma mistura de sinais neuronais em uma mesma série temporal. Este trabalho propõe um modelo linear de tempo discreto para o sinal produzido durante o disparo do neurônio. Os coeficientes desse modelo são calculados utilizando-se amostras reais dos sinais neuronais obtidas in vivo. O processo de modelagem concebido emprega técnicas de identificação de sistemas e processamento de sinais, e é dissociado de considerações sobre o funcionamento biofísico da célula, fornecendo uma alternativa de baixa complexidade para a modelagem do disparo neuronal. Além disso, a representação por meio de sistemas lineares permite idealizar um sistema inverso, cuja função é recuperar o sinal original de cada neurônio ativo em uma mistura extracelular. Nesse contexto, são discutidas algumas soluções baseadas em filtros adaptativos para a simulação do sistema inverso, introduzindo uma nova abordagem para o problema de separação de spikes neuronais.