2 resultados para IN-SITU FORMATION

em Biblioteca de Teses e Dissertações da USP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eletrodos de ouro foram utilizados para preparação de eletrodos modificados com monocamadas auto arranjadas de tióis. A limpeza do substrato metálico é fundamental para que a arquitetura molecular superficial possa ser efetuada com boa estabilidade e reprodutibilidade, além de fornecer dados utilizados no cálculo de área ativa, necessários na normalização dos valores de recobrimento superficial obtidos nas determinações de dessorção do agente modificador interno, o ácido 3-mercaptopropiônico. Os eletrodos modificados consistiram no recobrimento de transdutores de ouro com ácido 3-mercaptopropiônico através da imersão do eletrodo de Au em solução 25 mmolL-1 deste composto e, em seguida, com moléculas de cisteína, através da imersão do eletrodo de Au/3-MPA em solução 0,1 molL-1 deste composto, originando um sensor do tipo Au/3-MPA/CSH. As moléculas de cisteína foram utilizadas como agente redutor para obtenção de nanopartículas de Au na superfície do eletrodo modificado, através da aplicação de 20 µL de solução de HAuCl4. Após a confirmação da ausência do par tiólico superficial responsável pela redução das nanopartículas, o eletrodo Au/3-MPA/CSH/AuNp foi utilizado na determinação de peróxido de hidrogênio em soluções de concentrações crescentes em tampão fosfato 0,1 molL-1 pH 7,2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recentemente, o uso de persulfato em processo de oxidação química in situ em áreas contaminadas por compostos orgânicos ganhou notoriedade. Contudo, a matriz sólida do solo pode interagir com o persulfato, favorecendo a formação de radicais livres, evitando o acesso do oxidante até o contaminante devido a oxidação de compostos reduzidos presentes no solo ou ainda pela alteração das propriedades hidráulicas do solo. Essa pesquisa teve como objetivos avaliar se as interações entre a solução de persulfato com três solos brasileiros poderiam eventualmente interferir sua capacidade de oxidação bem como se a interação entre eles poderia alterar as propriedades hidráulicas do solo. Para isso, foram realizados ensaios de oxidação do Latossolo Vermelho (LV), Latossolo Vermelho Amarelo (LVA) e Neossolo Quartzarênico (NQ) com solução de persulfato (1g/L e 14g/L) por meio de ensaios de batelada, bem como a oxidação do LV por solução de persulfato (9g/L e 14g/L) em colunas indeformadas. Os resultados mostraram que o decaimento do persulfato seguiu modelo de primeira ordem e o consumo do oxidante não foi finito. A maior constante da taxa de reação (kobs) foi observada para o reator com LV. Essa maior interação foi decorrente da diferença na composição mineralógica e área específica. A caulinita, a gibbsita e os óxidos de ferro apresentaram maior interação com o persulfato. A redução do pH da solução dos reatores causou a lixiviação do alumínio e do ferro devido a dissolução dos minerais. O ferro mobilizado pode ter participado como catalisador da reação, favorecendo a formação de radicais livres, mas foi o principal responsável pelo consumo do oxidante. Parte do ferro oxidado pode ter sido precipitado como óxido cristalino favorecendo a obstrução dos poros. Devido à maior relação entre massa de persulfato e massa de solo, a constante kobs obtida no ensaio com coluna foi 23 vezes maior do que a obtida no ensaio de batelada, mesmo utilizando concentração 1,5 vezes menor no ensaio com coluna. Houve redução na condutividade hidráulica do solo e o fluxo da água mostrou-se heterogêneo após a oxidação devido a mudanças na estrutura dos minerais. Para a remediação de áreas com predomínio de solos tropicais, especialmente do LV, pode ocorrer a formação de radicais livres, mas pode haver um consumo acentuado e não finito do oxidante. Verifica-se que o pH da solução não deve ser inferior a 5 afim de evitar a mobilização de metais para a água subterrânea e eventual obstrução dos poros por meio da desagregação dos grãos de argila.