1 resultado para Georreferenciamento Direto
em Biblioteca de Teses e Dissertações da USP
Resumo:
As culturas do milho e da soja respondem pela maior parte da produção nacional de grãos, predominando o sistema de plantio direto. Para uma semeadura direta de qualidade, o bom aterramento do sulco é indispensável, pois garante um ambiente adequado às sementes. Neste sentido, é importante estimar a mobilização de solo promovida por uma haste sulcadora estreita durante esta operação. O modelo analítico existente visa representar a mobilização do solo no sistema de plantio convencional. Como consequência, há situações em que este não pode se aplicado, como no caso de hastes sulcadoras estreitas utilizadas em semeadoras de plantio direto. Nestas situações, o mecanismo de falha do solo pode se alterar, assumindo um comportamento não modelado na literatura. Essa pesquisa propõe um modelo fuzzy capaz de representar estas situações, aproveitando conhecimento da teoria de mecânica dos solos e da análise de resultados experimentais. No modelo proposto, parte das regras descrevem situações não abrangidas pelo modelo analítico, as quais foram formuladas a partir da estimativa das prováveis áreas de solo mobilizado. O modelo fuzzy foi testado com dados de experimentos conduzidos durante a pesquisa, em duas condições de granulometria de solo (arenoso e argiloso). O modelo proposto reproduziu as tendências observadas nos dados experimentais, mas superestimou os valores de área observados, sendo esse efeito bem mais intenso para os dados do experimento em solo arenoso. A superestimativa ocorreu devido à soma de diversos fatores. Um deles é a diferença entre as leituras experimentais, as quais consideram apenas o solo realmente movimentado, e a premissa do modelo analítico, que considera toda a área de solo incluindo aquela cisalhada, porém não mobilizada. Outro fator foi devido ao efeito do disco de corte da palha, que pré-cisalha o solo à frente da ferramenta. No ensaio em solo arenoso os valores observados de área de solo mobilizado foram menores que os esperados, intensificando o efeito de superestimativa do modelo fuzzy, sendo que este efeito não representa uma deficiência deste modelo.