4 resultados para Gene by environment interactions
em Biblioteca de Teses e Dissertações da USP
Resumo:
A seca é um dos estresses abióticos mais importantes na cultura do milho, o qual ocasiona reduções significativas na produção de grãos. A arquitetura genética da tolerância à seca é complexa, fazendo-se necessária a melhor compreensão desse caráter. Estudos envolvendo mapeamento associativo são úteis por explorarem a variação genética de caracteres quantitativos e, adicionalmente, levam em conta informações acerca de genótipos, ambientes e interações genótipo por ambiente (G × E). Ao considerar efeitos de G × E em modelos de mapeamento associativo há possibilidade de identificar regiões no genoma associadas à condições e ambientes específicos. Este trabalho teve como objetivo detectar associações relacionadas à tolerância à seca em milho por meio de um modelo de mapeamento associativo para múltiplos ambientes e múltiplos locos, o qual permitiu distinguir associações com efeitos ambiente-específico daquelas com efeitos principais e de interação associação por ambiente (QEI). O painel associativo foi composto por 190 linhagens, classificadas de acordo com os grupos heteróticos quanto ao tipo de grão. Marcadores SNPs (∼500k) foram utilizados para a genotipagem do painel associativo. Duas linhagens (L228-3 e L3) foram usadas como testadores comuns e os híbridos obtidos foram avaliados em duas localidades (Janaúba-MG e Teresina-PI), dois anos agrícolas (2010 e 2011), sob duas condições de tratamento (irrigado e não irrigado). Ao total, consideraram-se seis caracteres: peso de grãos, intervalo de florescimento, florescimento feminino e masculino, altura de planta e de espiga. Consideraram-se dois grupos de mapeamento, agrupados de acordo com os testadores utilizados. SNPs foram úteis para testar associações ao longo do genoma do milho e investigar o relacionamento genético entre indivíduos. O modelo de mapeamento associativo, com inclusão de informações sobre interação G × E, detectou o total de 179 associações, e o maior número de associações foram relacionadas aos caracteres de florescimento. A maioria das associações (168) apresentaram QEI significativo, sendo que o tamanho e a magnitude desses efeitos distinguiram-se de acordo com o ambiente em avaliação. Apenas o caráter florescimento feminino não apresentou associações com efeitos estáveis ao longo dos ambientes em estudo. A detecção de algumas associações em posições próximas do genoma evidenciam possíveis efeitos de pleiotropia. Algumas associações foram co-localizadas em regiões do genoma do milho relacionadas à tolerância à seca, sendo que algumas dessas associações estavam envolvidas a fatores pertencentes à vias metabólicas de interesse. O presente estudo forneceu informações úteis para a compreensão da base genética da tolerância à seca em milho sob os ambientes específicos em avaliação.
Resumo:
Este trabalho mostra o envolvimento do gene RECK no processo de progressão do ciclo celular. Foi verificado que a expressão endógena de RECK é modulada durante a progressão do ciclo celular. A superexpressão de RECK em fibroblastos normais de camundongo promove uma diminuição da capacidade proliferativa das células e um retardo da transição das fases G0/G1-S do ciclo celular. Além disso, os resultados sugerem que um dos possíveis mecanismos de ação de RECK, que promovem este processo, envolve a indução da expressão de um inibidor de CDK, especificamente de p21, e retardo da fosforilação de pRb. Os resultados indicam, ainda, que durante a progressão do ciclo celular a expressão do gene RECK apresenta uma correlação inversa com a expressão do proto-oncogene c-myc. Estes dados corroboram os dados da literatura que mostram RECK como um alvo para o produto de diversos oncogenes, como ras e c-myc. A caracterização da repressão de RECK por c-Myc mostrou que a mesma ocorre ao nível transcricional e que sítios Sp1, presentes no promotor de RECK, são essenciais para a ação de Myc. Dados adicionais sugerem que a repressão de RECK por c-Myc parece envolver mecanismos de desacetilação de histonas. A modulação da expressão de RECK também foi avaliada durante a progressão maligna de tumores do sistema nervoso central (especificamente, gliomas). Foi verificado que a expressão de RECK não é alterada com a progressão deste tipo de tumor. Porém, foi verificado que os pacientes que manifestaram um maior tempo de sobrevida apresentaram tumores com uma significativa maior expressão do gene RECK. Estes dados sugerem que RECK possa ser um possível marcador prognóstico. A caracterização da regulação da expressão de RECK, tanto em células normais como em diferentes tipos de tumores, assim como os alvos moleculares da sua ação, são pontos muito importantes para o entendimento dos mecanismos que controlam a proliferação celular e podem contribuir para o desenvolvimento de novas formas de terapia anti-tumoral.
Resumo:
Geralmente, nos experimentos genótipo por ambiente (G × E) é comum observar o comportamento dos genótipos em relação a distintos atributos nos ambientes considerados. A análise deste tipo de experimentos tem sido abordada amplamente para o caso de um único atributo. Nesta tese são apresentadas algumas alternativas de análise considerando genótipos, ambientes e atributos simultaneamente. A primeira, é baseada no método de mistura de máxima verossimilhança de agrupamento - Mixclus e a análise de componentes principais de 3 modos - 3MPCA, que permitem a análise de tabelas de tripla entrada, estes dois métodos têm sido muito usados na área da psicologia e da química, mas pouco na agricultura. A segunda, é uma metodologia que combina, o modelo de efeitos aditivos com interação multiplicativa - AMMI, modelo eficiente para a análise de experimentos (G × E) com um atributo e a análise de procrustes generalizada, que permite comparar configurações de pontos e proporcionar uma medida numérica de quanto elas diferem. Finalmente, é apresentada uma alternativa para realizar imputação de dados nos experimentos (G × E), pois, uma situação muito frequente nestes experimentos, é a presença de dados faltantes. Conclui-se que as metodologias propostas constituem ferramentas úteis para a análise de experimentos (G × E) multiatributo.
Resumo:
As análises biplot que utilizam os modelos de efeitos principais aditivos com inter- ação multiplicativa (AMMI) requerem matrizes de dados completas, mas, frequentemente os ensaios multiambientais apresentam dados faltantes. Nesta tese são propostas novas metodologias de imputação simples e múltipla que podem ser usadas para analisar da- dos desbalanceados em experimentos com interação genótipo por ambiente (G×E). A primeira, é uma nova extensão do método de validação cruzada por autovetor (Bro et al, 2008). A segunda, corresponde a um novo algoritmo não-paramétrico obtido por meio de modificações no método de imputação simples desenvolvido por Yan (2013). Também é incluído um estudo que considera sistemas de imputação recentemente relatados na literatura e os compara com o procedimento clássico recomendado para imputação em ensaios (G×E), ou seja, a combinação do algoritmo de Esperança-Maximização com os modelos AMMI ou EM-AMMI. Por último, são fornecidas generalizações da imputação simples descrita por Arciniegas-Alarcón et al. (2010) que mistura regressão com aproximação de posto inferior de uma matriz. Todas as metodologias têm como base a decomposição por valores singulares (DVS), portanto, são livres de pressuposições distribucionais ou estruturais. Para determinar o desempenho dos novos esquemas de imputação foram realizadas simulações baseadas em conjuntos de dados reais de diferentes espécies, com valores re- tirados aleatoriamente em diferentes porcentagens e a qualidade das imputações avaliada com distintas estatísticas. Concluiu-se que a DVS constitui uma ferramenta útil e flexível na construção de técnicas eficientes que contornem o problema de perda de informação em matrizes experimentais.