4 resultados para Finite-element modeling
em Biblioteca de Teses e Dissertações da USP
Resumo:
Electromagnetic coupling phenomena between overhead power transmission lines and other nearby structures are inevitable, especially in densely populated areas. The undesired effects resulting from this proximity are manifold and range from the establishment of hazardous potentials to the outbreak of alternate current corrosion phenomena. The study of this class of problems is necessary for ensuring security in the vicinities of the interaction zone and also to preserve the integrity of the equipment and of the devices there present. However, the complete modeling of this type of application requires the three- -dimensional representation of the region of interest and needs specific numerical methods for field computation. In this work, the modeling of problems arising from the flow of electrical currents in the ground (the so-called conductive coupling) will be addressed with the finite element method. Those resulting from the time variation of the electromagnetic fields (the so-called inductive coupling) will be considered as well, and they will be treated with the generalized PEEC (Partial Element Equivalent Circuit) method. More specifically, a special boundary condition on the electric potential is proposed for truncating the computational domain in the finite element analysis of conductive coupling problems, and a complete PEEC formulation for modeling inductive coupling problems is presented. Test configurations of increasing complexities are considered for validating the foregoing approaches. These works aim to provide a contribution to the modeling of this class of problems, which tend to become common with the expansion of power grids.
Resumo:
Esta tese apresenta uma abordagem para a criação rápida de modelos em diferentes geometrias (complexas ou de alta simetria) com objetivo de calcular a correspondente intensidade espalhada, podendo esta ser utilizada na descrição de experimentos de es- palhamento à baixos ângulos. A modelagem pode ser realizada com mais de 100 geome- trias catalogadas em um Banco de Dados, além da possibilidade de construir estruturas a partir de posições aleatórias distribuídas na superfície de uma esfera. Em todos os casos os modelos são gerados por meio do método de elementos finitos compondo uma única geometria, ou ainda, compondo diferentes geometrias, combinadas entre si a partir de um número baixo de parâmetros. Para realizar essa tarefa foi desenvolvido um programa em Fortran, chamado de Polygen, que permite modelar geometrias convexas em diferentes formas, como sólidos, cascas, ou ainda com esferas ou estruturas do tipo DNA nas arestas, além de usar esses modelos para simular a curva de intensidade espalhada para sistemas orientados e aleatoriamente orientados. A curva de intensidade de espalhamento é calculada por meio da equação de Debye e os parâmetros que compõe cada um dos modelos, podem ser otimizados pelo ajuste contra dados experimentais, por meio de métodos de minimização baseados em simulated annealing, Levenberg-Marquardt e algorítmicos genéticos. A minimização permite ajustar os parâmetros do modelo (ou composição de modelos) como tamanho, densidade eletrônica, raio das subunidades, entre outros, contribuindo para fornecer uma nova ferramenta para modelagem e análise de dados de espalhamento. Em outra etapa desta tese, é apresentado o design de modelos atomísticos e a sua respectiva simulação por Dinâmica Molecular. A geometria de dois sistemas auto-organizado de DNA na forma de octaedro truncado, um com linkers de 7 Adeninas e outro com linkers de ATATATA, foram escolhidas para realizar a modelagem atomística e a simulação por Dinâmica Molecular. Para este sistema são apresentados os resultados de Root Mean Square Deviations (RMSD), Root Mean Square Fluctuations (RMSF), raio de giro, torção das hélices duplas de DNA além da avaliação das ligações de Hidrogênio, todos obtidos por meio da análise de uma trajetória de 50 ns.
Resumo:
Este trabalho propõe uma técnica de modelagem multiescala concorrente do concreto considerando duas escalas distintas: a mesoescala, onde o concreto é modelado como um material heterogêneo, e a macroescala, na qual o concreto é tratado como um material homogêneo. A heterogeneidade da estrutura mesoscópica do concreto é idealizada considerando três fases distintas, compostas pelos agregados graúdos e argamassa (matriz), estes considerados materiais homogêneos, e zona de transição interfacial (ZTI), tratada como a parte mais fraca entre as três fases. O agregado graúdo é gerado a partir de uma curva granulométrica e posicionado na matriz de forma aleatória. Seu comportamento mecânico é descrito por um modelo constitutivo elástico-linear, devido a sua maior resistência quando comparado com as outras duas fases do concreto. Elementos finitos contínuos com alta relação de aspecto em conjunto com um modelo constitutivo de dano são usados para representar o comportamento não linear do concreto, decorrente da iniciação de fissuras na ZTI e posterior propagação para a matriz, dando lugar à formação de macrofissuras. Os elementos finitos de interface com alta relação de aspecto são inseridos entre todos os elementos regulares da matriz e entre os da matriz e agregados, representando a ZTI, tornando-se potenciais caminhos de propagação de fissuras. No estado limite, quando a espessura do elemento de interface tende a zero (h ?0) e, consequentemente, a relação de aspecto tende a infinito, estes elementos apresentam a mesma cinemática da aproximação contínua de descontinuidades fortes (ACDF), sendo apropriados para representar a formação de descontinuidades associados a fissuras, similar aos modelos coesivos. Um modelo de dano à tração é proposto para representar o comportamento mecânico não linear das interfaces, associado à formação de fissuras, ou até mesmo ao eventual fechamento destas. A fim de contornar os problemas causados pela malha de elementos finitos de transição entre as malhas da macro e da mesoescala, que, em geral, apresentam diferenças expressivas 5 de refinamento, utiliza-se uma técnica recente de acoplamento de malhas não conformes. Esta técnica é baseada na definição de elementos finitos de acoplamento (EFAs), os quais são capazes de estabelecer a continuidade de deslocamento entre malhas geradas de forma completamente independentes, sem aumentar a quantidade total de graus de liberdade do problema, podendo ser utilizados tanto para acoplar malhas não sobrepostas quanto sobrepostas. Para tornar possível a análise em multiescala em casos nos quais a região de localização de deformações não pode ser definida a priori, propõe-se uma técnica multiescala adaptativa. Nesta abordagem, usa-se a distribuição de tensões da escala macroscópica como um indicador para alterar a modelagem das regiões críticas, substituindo-se a macroescala pela mesoescala durante a análise. Consequentemente, a malha macroscópica é automaticamente substituída por uma malha mesoscópica, onde o comportamento não linear está na iminência de ocorrer. Testes numéricos são desenvolvidos para mostrar a capacidade do modelo proposto de representar o processo de iniciação e propagação de fissuras na região tracionada do concreto. Os resultados numéricos são comparados com os resultados experimentais ou com aqueles obtidos através da simulação direta em mesoescala (SDM).
Resumo:
Este trabalho apresenta uma discussão sobre o estudo dos efeitos térmicos e elásticos decorrentes da pressão de sustentação presentes nos mancais. Para tanto, propõe-se um modelo matemático baseado nas equações para mancais curtos considerando a região de cavitação e utilizando o princípio da continuidade de massa. Com isto, deduzem-se as equações para o mancal a partir das equações de Reynolds e da energia, aplicando uma solução modificada para a solução de Ocvirk, sendo as equações resolvidas numericamente pelo Método das Diferenças Finitas. Somado o tratamento de mecânica dos fluidos, o trabalho discute dois modelos térmicos de previsão de temperatura média do fluido e sua influência no campo de pressão, apresentando gráficos representativos do campo de pressão e de temperatura, assim como as diferenças e implicações das diferenças. Para o cálculo de deformação da estrutura, utiliza-se um Modelo de Elementos Finitos para uma dada geometria, fazendo-se uma avaliação da variação do campo de pressão e o quanto essa diferença afeta as demais propriedades do fluido. Por fim, com o modelo completo, calcula-se o quanto esse modelamento para mancais curtos se aproxima de soluções para mancais finitos, com base em resultados da literatura, chegando a desvios quase oito vezes menores que os previstos pela literatura. Além disso, pode-se estabelecer a abrangência do modelo, ou seja, prever as condições em que suas propriedades são válidas e podem ser utilizadas para estudos iniciais.