5 resultados para Finite Elements, Masonry, Reinforced Masonry, Shear Walls

em Biblioteca de Teses e Dissertações da USP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O método construtivo com painéis portantes de concreto é economicamente viável, porém relativamente novo no cenário nacional, sobretudo no caso dos pré-moldados. As incertezas referentes às peculiaridades desse método, bem como a nova norma brasileira de painéis pré-moldados, ainda em elaboração, vem a motivar uma análise probabilística dos critérios de projeto disponíveis. Utilizando-se a técnica da confiabilidade estrutural, é possível propagar as incertezas referentes às variáveis a uma resposta final no índice de confiabilidade, sendo um cálculo totalmente probabilístico. Neste trabalho, emprega-se tal técnica com informações estatísticas referentes a lajes de concreto moldadas in loco para verificar, de maneira mais verossímil, a segurança dos critérios de projeto impostos pelo Precast Concrete Institute Design Handbook - Precast and Prestressed Concrete - 7th Edition (2010) às fases transitórias (desforma, transporte e içamento) e pela Norma Brasileira ABNT NBR 6118: 2014 - Projeto de estruturas de concreto, à fase em uso. Prossegue-se a uma análise crítica dos resultados bem como sugestões para diminuir a variação dos resultados, sobretudo pela calibração de novos coeficientes parciais de segurança, processo para o qual este trabalho pode servir de base.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

De modo a satisfazer aspectos de resistência, custo ou conforto, o aperfeiçoamento do desempenho das estruturas é uma meta sempre almejada na Engenharia. Melhorias têm sido alcançadas dado ao crescente uso de materiais compósitos, pois estes apresentam propriedades físicas diferenciadas capazes de atender as necessidades de projeto. Associado ao emprego de compósitos, o estudo da plasticidade demonstra uma interessante alternativa para aumentar o desempenho estrutural ao conferir uma capacidade resistente adicional ao conjunto. Entretanto, alguns problemas podem ser encontrados na análise elastoplástica de compósitos, além das próprias dificuldades inerentes à incorporação de fibras na matriz, no caso de compósitos reforçados. A forma na qual um compósito reforçado por fibras e suas fases têm sua representação e simulação é de extrema importância para garantir que os resultados obtidos sejam compatíveis com a realidade. À medida que se desenvolvem modelos mais refinados, surgem problemas referentes ao custo computacional, além da necessidade de compatibilização dos graus de liberdade entre os nós das malhas de elementos finitos da matriz e do reforço, muitas vezes exigindo a coincidência das referidas malhas. O presente trabalho utiliza formulações que permitem a representação de compósitos reforçados com fibras sem que haja a necessidade de coincidência entre malhas. Além disso, este permite a simulação do meio e do reforço em regime elastoplástico com o objetivo de melhor estudar o real comportamento. O modelo constitutivo adotado para a plasticidade é o de von Mises 2D associativo com encruamento linear positivo e a solução deste modelo foi obtida através de um processo iterativo. A formulação de elementos finitos posicional é adotada com descrição Lagrangeana Total e apresenta as posições do corpo no espaço como parâmetros nodais. Com o intuito de averiguar a correta implementação das formulações consideradas, exemplos para validação e apresentação das funcionalidades do código computacional desenvolvido foram analisados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho propõe uma técnica de modelagem multiescala concorrente do concreto considerando duas escalas distintas: a mesoescala, onde o concreto é modelado como um material heterogêneo, e a macroescala, na qual o concreto é tratado como um material homogêneo. A heterogeneidade da estrutura mesoscópica do concreto é idealizada considerando três fases distintas, compostas pelos agregados graúdos e argamassa (matriz), estes considerados materiais homogêneos, e zona de transição interfacial (ZTI), tratada como a parte mais fraca entre as três fases. O agregado graúdo é gerado a partir de uma curva granulométrica e posicionado na matriz de forma aleatória. Seu comportamento mecânico é descrito por um modelo constitutivo elástico-linear, devido a sua maior resistência quando comparado com as outras duas fases do concreto. Elementos finitos contínuos com alta relação de aspecto em conjunto com um modelo constitutivo de dano são usados para representar o comportamento não linear do concreto, decorrente da iniciação de fissuras na ZTI e posterior propagação para a matriz, dando lugar à formação de macrofissuras. Os elementos finitos de interface com alta relação de aspecto são inseridos entre todos os elementos regulares da matriz e entre os da matriz e agregados, representando a ZTI, tornando-se potenciais caminhos de propagação de fissuras. No estado limite, quando a espessura do elemento de interface tende a zero (h ?0) e, consequentemente, a relação de aspecto tende a infinito, estes elementos apresentam a mesma cinemática da aproximação contínua de descontinuidades fortes (ACDF), sendo apropriados para representar a formação de descontinuidades associados a fissuras, similar aos modelos coesivos. Um modelo de dano à tração é proposto para representar o comportamento mecânico não linear das interfaces, associado à formação de fissuras, ou até mesmo ao eventual fechamento destas. A fim de contornar os problemas causados pela malha de elementos finitos de transição entre as malhas da macro e da mesoescala, que, em geral, apresentam diferenças expressivas 5 de refinamento, utiliza-se uma técnica recente de acoplamento de malhas não conformes. Esta técnica é baseada na definição de elementos finitos de acoplamento (EFAs), os quais são capazes de estabelecer a continuidade de deslocamento entre malhas geradas de forma completamente independentes, sem aumentar a quantidade total de graus de liberdade do problema, podendo ser utilizados tanto para acoplar malhas não sobrepostas quanto sobrepostas. Para tornar possível a análise em multiescala em casos nos quais a região de localização de deformações não pode ser definida a priori, propõe-se uma técnica multiescala adaptativa. Nesta abordagem, usa-se a distribuição de tensões da escala macroscópica como um indicador para alterar a modelagem das regiões críticas, substituindo-se a macroescala pela mesoescala durante a análise. Consequentemente, a malha macroscópica é automaticamente substituída por uma malha mesoscópica, onde o comportamento não linear está na iminência de ocorrer. Testes numéricos são desenvolvidos para mostrar a capacidade do modelo proposto de representar o processo de iniciação e propagação de fissuras na região tracionada do concreto. Os resultados numéricos são comparados com os resultados experimentais ou com aqueles obtidos através da simulação direta em mesoescala (SDM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uniões por prendedores são elementos amplamente utilizados na indústria aeronáutica para a união de partes constituintes da aeronave. Contudo, devido à sua geometria e aos carregamentos sofridos, estes elementos estão frequentemente sujeitos a falhas por fadiga. Assim, para um projeto e dimensionamento bem executado dessas juntas, é necessário conhecer seu comportamento mecânico e o campo de tensões ao qual estão sujeitas. O método dos elementos finitos certamente atende a estas necessidades; porém, o uso de elementos sólidos tridimensionais para a representação destas uniões pode levar a análises demasiadamente demoradas e custosas, sendo desejável o uso de modelos mais simplificados. Nesse trabalho, juntas de topo assimétricas são modeladas pelo método dos elementos finitos, utilizando tanto elementos sólidos tridimensionais quanto elementos de casca, com o objetivo de encontrar um modelo relativamente simples que apresente resultados satisfatórios e requeira um menor tempo de solução. Os resultados numéricos obtidos são comparados com resultados experimentais, que utilizam extensômetros e fotoelasticidade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O método dos elementos finitos é o método numérico mais difundido na análise de estruturas. Ao longo das últimas décadas foram formulados inúmeros elementos finitos para análise de cascas e placas. As formulações de elementos finitos lidam bem com o campo de deslocamentos, mas geralmente faltam testes que possam validar os resultados obtidos para o campo das tensões. Este trabalho analisa o elemento finito T6-3i, um elemento finito triangular de seis nós proposto dentro de uma formulação geometricamente exata, em relação aos seus resultados de tensões, comparando-os com as teorias analíticas de placas, resultados de tabelas para o cálculo de momentos em placas retangulares e do ANSYSr, um software comercial para análise estrutural, mostrando que o T6-3i pode apresentar resultados insatisfatórios. Na segunda parte deste trabalho, as potencialidades do T6-3i são expandidas, sendo proposta uma formulação dinâmica para análise não linear de cascas. Utiliza-se um modelo Lagrangiano atualizado e a forma fraca é obtida do Teorema dos Trabalhos Virtuais. São feitas simulações numéricas da deformação de domos finos que apresentam vários snap-throughs e snap-backs, incluindo domos com vincos curvos, mostrando a robustez, simplicidade e versatilidade do elemento na sua formulação e na geração das malhas não estruturadas necessárias para as simulações.