1 resultado para Distributed DAQ
em Biblioteca de Teses e Dissertações da USP
Filtro por publicador
- Aberdeen University (7)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (3)
- Aston University Research Archive (138)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (37)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (21)
- CentAUR: Central Archive University of Reading - UK (96)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (34)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (12)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (14)
- Digital Peer Publishing (3)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (25)
- Duke University (2)
- Galway Mayo Institute of Technology, Ireland (1)
- Harvard University (2)
- Instituto Politécnico do Porto, Portugal (78)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (6)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (5)
- Open University Netherlands (1)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (9)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (13)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (52)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (16)
- Scielo Saúde Pública - SP (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (78)
- Universidade do Minho (2)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (21)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (20)
- University of Queensland eSpace - Australia (42)
- University of Southampton, United Kingdom (4)
- University of Washington (3)
- WestminsterResearch - UK (2)
Resumo:
This research presents the development and implementation of fault location algorithms in power distribution networks with distributed generation units installed along their feeders. The proposed algorithms are capable of locating the fault based on voltage and current signals recorded by intelligent electronic devices installed at the end of the feeder sections, information to compute the loads connected to these feeders and their electric characteristics, and the operating status of the network. In addition, this work presents the study of analytical models of distributed generation and load technologies that could contribute to the performance of the proposed fault location algorithms. The validation of the algorithms was based on computer simulations using network models implemented in ATP, whereas the algorithms were implemented in MATLAB.