3 resultados para Data Mining and Machine Learning

em Biblioteca de Teses e Dissertações da USP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Em virtude de uma elevada expectativa de vida mundial, faz-se crescente a probabilidade de ocorrer acidentes naturais e traumas físicos no cotidiano, o que ocasiona um aumento na demanda por reabilitação. A terapia física, sob o paradigma da reabilitação robótica com serious games, oferece maior motivação e engajamento do paciente ao tratamento, cujo emprego foi recomendado pela American Heart Association (AHA), apontando a mais alta avaliação (Level A) para pacientes internados e ambulatoriais. No entanto, o potencial de análise dos dados coletados pelos dispositivos robóticos envolvidos é pouco explorado, deixando de extrair informações que podem ser de grande valia para os tratamentos. O foco deste trabalho consiste na aplicação de técnicas para descoberta de conhecimento, classificando o desempenho de pacientes diagnosticados com hemiparesia crônica. Os pacientes foram inseridos em um ambiente de reabilitação robótica, fazendo uso do InMotion ARM, um dispositivo robótico para reabilitação de membros superiores e coleta dos dados de desempenho. Foi aplicado sobre os dados um roteiro para descoberta de conhecimento em bases de dados, desempenhando pré-processamento, transformação (extração de características) e então a mineração de dados a partir de algoritmos de aprendizado de máquina. A estratégia do presente trabalho culminou em uma classificação de padrões com a capacidade de distinguir lados hemiparéticos sob uma precisão de 94%, havendo oito atributos alimentando a entrada do mecanismo obtido. Interpretando esta coleção de atributos, foi observado que dados de força são mais significativos, os quais abrangem metade da composição de uma amostra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O setor supermercadista sofreu grandes alterações nos últimos anos, principalmente com o avanço das tecnologias, a competição, a concentração e algumas insuficiências em seus processos. Estes e outros fatores favoreceram ao surgimento do movimento de ECR (Resposta de Consumidor Eficiente) que procura criar um relacionamento mais forte entre indústria e varejo através de novas visões para suas estratégias operacionais. A evolução das tecnologias de informação permitiram ao setor varejista gerar uma maior volume de dados a partir, principalmente, de seus check-outs. Entretanto, estes dados nem sempre são armazenados de forma correta ou utilizados de forma a se aproveitar a plenitude das informações neles contidas. O processo de transformar os dados em informação e conhecimento vem evoluindo constantemente. Uma das atuais metodologias de trabalhar dados é o Data Mining ou Mineração de Dados, que pode ser descrito como sendo uma variedade de ferramentas e estratégias que processam dados aumentando a utilidade destes em bancos de dados. Este trabalho analisa através de um estudo multicaso exploratório na região de Ribeirão Preto, no interior de São Paulo, a avaliação da capacidade do uso da tecnologia Data Mining para o fortalecimento do movimento ECR, principalmente em pequenos e médios varejistas e indústrias alimentícias, no sentido de oferecer a estes um diferencial de negociação para formação de alianças estratégias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research proposes a methodology to improve computed individual prediction values provided by an existing regression model without having to change either its parameters or its architecture. In other words, we are interested in achieving more accurate results by adjusting the calculated regression prediction values, without modifying or rebuilding the original regression model. Our proposition is to adjust the regression prediction values using individual reliability estimates that indicate if a single regression prediction is likely to produce an error considered critical by the user of the regression. The proposed method was tested in three sets of experiments using three different types of data. The first set of experiments worked with synthetically produced data, the second with cross sectional data from the public data source UCI Machine Learning Repository and the third with time series data from ISO-NE (Independent System Operator in New England). The experiments with synthetic data were performed to verify how the method behaves in controlled situations. In this case, the outcomes of the experiments produced superior results with respect to predictions improvement for artificially produced cleaner datasets with progressive worsening with the addition of increased random elements. The experiments with real data extracted from UCI and ISO-NE were done to investigate the applicability of the methodology in the real world. The proposed method was able to improve regression prediction values by about 95% of the experiments with real data.