1 resultado para Critical exponents
em Biblioteca de Teses e Dissertações da USP
Resumo:
Estudamos transições de fases quânticas em gases bosônicos ultrafrios aprisionados em redes óticas. A física desses sistemas é capturada por um modelo do tipo Bose-Hubbard que, no caso de um sistema sem desordem, em que os átomos têm interação de curto alcance e o tunelamento é apenas entre sítios primeiros vizinhos, prevê a transição de fases quântica superfluido-isolante de Mott (SF-MI) quando a profundidade do potencial da rede ótica é variado. Num primeiro estudo, verificamos como o diagrama de fases dessa transição muda quando passamos de uma rede quadrada para uma hexagonal. Num segundo, investigamos como a desordem modifica essa transição. No estudo com rede hexagonal, apresentamos o diagrama de fases da transição SF-MI e uma estimativa para o ponto crítico do primeiro lobo de Mott. Esses resultados foram obtidos usando o algoritmo de Monte Carlo quântico denominado Worm. Comparamos nossos resultados com os obtidos a partir de uma aproximação de campo médio e com os de um sistema com uma rede ótica quadrada. Ao introduzir desordem no sistema, uma nova fase emerge no diagrama de fases do estado fundamental intermediando a fase superfluida e a isolante de Mott. Essa nova fase é conhecida como vidro de Bose (BG) e a transição de fases quântica SF-BG que ocorre nesse sistema gerou muitas controvérsias desde seus primeiros estudos iniciados no fim dos anos 80. Apesar dos avanços em direção ao entendimento completo desta transição, a caracterização básica das suas propriedades críticas ainda é debatida. O que motivou nosso estudo, foi a publicação de resultados experimentais e numéricos em sistemas tridimensionais [Yu et al. Nature 489, 379 (2012), Yu et al. PRB 86, 134421 (2012)] que violam a lei de escala $\\phi= u z$, em que $\\phi$ é o expoente da temperatura crítica, $z$ é o expoente crítico dinâmico e $ u$ é o expoente do comprimento de correlação. Abordamos essa controvérsia numericamente fazendo uma análise de escalonamento finito usando o algoritmo Worm nas suas versões quântica e clássica. Nossos resultados demonstram que trabalhos anteriores sobre a dependência da temperatura de transição superfluido-líquido normal com o potencial químico (ou campo magnético, em sistemas de spin), $T_c \\propto (\\mu-\\mu_c)^\\phi$, estavam equivocados na interpretação de um comportamento transiente na aproximação da região crítica genuína. Quando os parâmetros do modelo são modificados de maneira a ampliar a região crítica quântica, simulações com ambos os modelos clássico e quântico revelam que a lei de escala $\\phi= u z$ [com $\\phi=2.7(2)$, $z=3$ e $ u = 0.88(5)$] é válida. Também estimamos o expoente crítico do parâmetro de ordem, encontrando $\\beta=1.5(2)$.