2 resultados para Cantilever slab

em Biblioteca de Teses e Dissertações da USP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O uso de materiais inteligentes em problemas de controle de vibração tem sido investigado em diversas pesquisas ao longo dos últimos anos. Apesar de que diferentes materiais inteligentes estão disponíveis, o piezelétrico tem recebido grande atenção devido à facilidade de uso como sensores, atuadores, ou ambos simultaneamente. As principais técnicas de controle usando materiais piezoelétricos são os ativos e passivos. Circuitos piezelétricos passivos são ajustados para uma frequência específica e, portanto, a largura de banda efetiva é pequena. Embora os sistemas ativos possam apresentar um bom desempenho no controle de vibração, a quantidade de energia externa e hardware adicionado são questões importantes. As técnicas SSD (Synchronized Switch Damping) foram desenvolvidas como uma alternativa aos controladores passivos e controladores ativos de vibração. Elas podem ser técnicas semi-ativas ou semi-passivas que introduzem um tratamento não linear na tensão elétrica proveniente do material piezelétrico e induz um aumento na conversão de energia mecânica para energia elétrica e, consequentemente, um aumento no efeito de amortecimento. Neste trabalho, o controle piezoelétrico semi-passivo de uma pá piezelétrica engastada é apresentado e comparado com outros controladores. O modelo não linear electromecânico de uma pá com piezocerâmicas incorporados é determinado com base no método variacional-assintótico (VAM). O sistema rotativo acoplado não linear é resolvido no domínio do tempo, utilizando um método de integração alfa-generalizado afim de garantir a estabilidade numérica. As simulações são realizadas para uma vasta gama de velocidades de rotação. Em primeiro lugar, um conjunto de resistências (variando desde a condição de curto-circuito para a condição de circuito aberto) é considerada. O efeito da resistência ótima (que resulta em máximo amortecimento) sobre o comportamento do sistema é investigado para o aumento da velocidade de rotação. Mais tarde, a técnica SSDS é utilizada para amortecer as oscilações da pá com o aumento da velocidade de rotação. Os resultados mostram que a técnica SSDS pode ser um método útil para o controle de vibrações de vigas rotativas não lineares, tais como pás de helicóptero.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A via permanente representa um elemento imprescindível na composição do transporte ferroviário e seu desempenho deve ser adequado, de forma a garantir tanto segurança quanto conforto. Assim, diversos aspectos devem ser analisados ainda na fase de projeto, através de dimensionamentos que confrontem diferentes parâmetros da resposta da via e os limites estabelecidos. Dessa forma, o conhecimento do comportamento mecânico da via, devido aos esforços impostos pela passagem do material rodante, passa a ser essencial no projeto de uma estrutura que garanta os requisitos necessários, sem ser inviável economicamente. Visto que esse comportamento mecânico é muito sensível à rigidez vertical da estrutura, o presente trabalho apresenta análises da influência desse parâmetro na resposta da via e, consequentemente, no seu dimensionamento. Nesse contexto, o trabalho abrange tanto o caso de vias em lastro solicitadas por trens de carga, quanto o caso de vias em laje solicitadas por trens de passageiros em meios urbanos. No primeiro caso são realizados estudos paramétricos, por meio de modelos clássicos e um modelo mecanicista, para a análise de momentos fletores e deflexões nos trilhos, bem como tensões verticais nas camadas de lastro, sub-lastro e subleito. Já no segundo caso, são realizados estudos paramétricos relativos à transmissibilidade e à atenuação de vibrações causadoras de ruído secundário. Também é feita uma análise da influência da rigidez vertical na amplificação dinâmica das cargas estáticas, que pode ser aplicada a ambos os casos citados e até extrapolada para casos de vias de alta velocidade. Os resultados mostraram que aumentos de rigidez vertical resultam em ganhos do ponto de vista de momentos fletores e deflexões nos trilhos, além de maior resistência e capacidade de dissipação de tensões verticais nas camadas de lastro, sub-lastro e subleito. Por outro lado, esses aumentos também levaram a maiores tensões nas camadas subjacentes à grade citadas, além de atenuações de vibrações em menores intervalos de frequência e maiores amplificações dinâmicas das cargas estáticas em vias de alta velocidade. Assim, é mostrado que a influência da rigidez vertical, tanto da via como um todo quanto de alguns elementos específicos, não deve ser analisada de forma genérica, pois, dependendo do parâmetro da resposta da via considerado no dimensionamento, seu aumento pode representar uma influência positiva ou negativa.