35 resultados para reator anaeróbio de chicanas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A unidade de coqueamento retardado é um processo térmico de conversão, utilizado pelas refinarias, para converter cargas residuais em produtos de baixo peso molecular e com alto valor agregado (gases, nafta e gasóleo) e coque verde de petróleo. Um pequeno aumento no rendimento líquido da unidade de coqueamento retardado proporciona benefícios económicos consideráveis, especialmente no destilado líquido. A concorrência no mercado, as restrições sobre as especificações do produto e gargalos operacionais exigem um melhor planejamento da produção. Portanto, o desenvolvimento de novas estratégias e modelos matemáticos, focados em melhores condições de operação do processo industrial e formulações de produtos, é essencial para alcançar melhores rendimentos e um acompanhamento mais preciso da qualidade do produto. Este trabalho tem como objetivo o desenvolvimento de modelo matemático do conjunto forno-reator do processo de coqueamento, a partir de informações obtidas em uma planta industrial. O modelo proposto é baseado na caracterização da carga e dos produtos em pseudocomponentes, modelos cinéticos de grupos e condições de equilíbrio liquido-vapor. Além disso, são discutidos os principais desafios para o desenvolver o modelo matemático do forno e do reator, bem como a caracterização rigorosa do resíduo de vácuo e dos produtos para determinar os parâmetros que afetam a morfologia do coque e a zona de reação no interior do reator de coque.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A gaseificação utiliza o conteúdo intrínseco de carbonos e hidrogênios das matérias primas sólidas ou líquidas na geração de uma mistura de hidrogênio (H2), monóxido de carbono (CO), dióxido de carbono (CO2) e metano (CH4). Tal mistura pode ser utilizada como matéria prima na síntese de novos produtos ou como combustível. A gaseificação pode ser utilizada no processamento de uma gama variada de produtos, independentemente de suas características ou estado físico. A utilização de biomassa como insumo da gaseificação vem sendo cada vez mais explorada e estudada, já que apresenta benefícios não somente na esfera ambiental, mas também em âmbitos econômicos e sociais. A vinhaça é um subproduto do processo de produção de álcool, que contém grandes concentrações de nutrientes e matéria orgânica em sua composição. A sua utilização hoje está limitada a fertirrigação e a aplicações isoladas em biodigestão e outros, que não são suficientes para o consumo da produção anual crescente do resíduo. Seu uso na gaseificação permitiria o aproveitamento do conteúdo orgânico da mesma e a produção de gases de alto valor agregado. Como a umidade do insumo interfere negativamente na eficiência da gaseificação clássica, a aplicação da mesma para matérias primas com alto teor de líquidos não é recomendada. Uma alternativa viável seria a utilização do meio gaseificante supercrítico, que resulta em rendimentos constantes, independentemente da umidade da corrente de entrada do reator. O presente trabalho consiste no projeto de um módulo de gaseificação de vinhaça em água supercrítica, a ser instalado como uma unidade anexa a usinas de açúcar e álcool. Ele compreende o projeto conceitual e análise de viabilidade deste módulo, incluindo estimativas de CAPEX (Capital Expenditure) e OPEX (Operation Expenditure) e uma análise de sensibilidade dos mesmos. O estudo apresenta ainda o estado da arte do conhecimento e da tecnologia de gaseificação com água supercrítica (SCWG), relacionando os gargalos a serem resolvidos, assim como os ganhos intrínsecos da definição conceitual do projeto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recentemente, o uso de persulfato em processo de oxidação química in situ em áreas contaminadas por compostos orgânicos ganhou notoriedade. Contudo, a matriz sólida do solo pode interagir com o persulfato, favorecendo a formação de radicais livres, evitando o acesso do oxidante até o contaminante devido a oxidação de compostos reduzidos presentes no solo ou ainda pela alteração das propriedades hidráulicas do solo. Essa pesquisa teve como objetivos avaliar se as interações entre a solução de persulfato com três solos brasileiros poderiam eventualmente interferir sua capacidade de oxidação bem como se a interação entre eles poderia alterar as propriedades hidráulicas do solo. Para isso, foram realizados ensaios de oxidação do Latossolo Vermelho (LV), Latossolo Vermelho Amarelo (LVA) e Neossolo Quartzarênico (NQ) com solução de persulfato (1g/L e 14g/L) por meio de ensaios de batelada, bem como a oxidação do LV por solução de persulfato (9g/L e 14g/L) em colunas indeformadas. Os resultados mostraram que o decaimento do persulfato seguiu modelo de primeira ordem e o consumo do oxidante não foi finito. A maior constante da taxa de reação (kobs) foi observada para o reator com LV. Essa maior interação foi decorrente da diferença na composição mineralógica e área específica. A caulinita, a gibbsita e os óxidos de ferro apresentaram maior interação com o persulfato. A redução do pH da solução dos reatores causou a lixiviação do alumínio e do ferro devido a dissolução dos minerais. O ferro mobilizado pode ter participado como catalisador da reação, favorecendo a formação de radicais livres, mas foi o principal responsável pelo consumo do oxidante. Parte do ferro oxidado pode ter sido precipitado como óxido cristalino favorecendo a obstrução dos poros. Devido à maior relação entre massa de persulfato e massa de solo, a constante kobs obtida no ensaio com coluna foi 23 vezes maior do que a obtida no ensaio de batelada, mesmo utilizando concentração 1,5 vezes menor no ensaio com coluna. Houve redução na condutividade hidráulica do solo e o fluxo da água mostrou-se heterogêneo após a oxidação devido a mudanças na estrutura dos minerais. Para a remediação de áreas com predomínio de solos tropicais, especialmente do LV, pode ocorrer a formação de radicais livres, mas pode haver um consumo acentuado e não finito do oxidante. Verifica-se que o pH da solução não deve ser inferior a 5 afim de evitar a mobilização de metais para a água subterrânea e eventual obstrução dos poros por meio da desagregação dos grãos de argila.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Óleo de soja epoxidado (OSE) é um produto químico há muito tempo utilizado como co-estabilizante e plastificante secundário do poli (cloreto de vinila) (PVC), ou seja, como um material que tem limitações na quantidade máxima que pode ser usada no composto de PVC. A sua aplicação como plastificante primário, ou seja, como o principal elemento plastificante no composto de PVC, e como base para outros plastificantes de fontes renováveis, tem aumentado nos últimos anos, principalmente devido a melhorias de desempenho e à redução do custo do OSE em comparação com plastificantes tradicionais. A reação de epoxidação do óleo de soja é bem conhecida e ocorre em duas fases líquidas, com reações em ambas as fases, e transferência de massa entre as fases. O processo industrial mais utilizado conta com formação in-situ do ácido perfórmico, através da adição gradativa do principal reagente, o peróxido de hidrogênio a uma mistura agitada de ácido fórmico e óleo de soja refinado. Industrialmente, o processo é realizado em batelada, controlando a adição do reagente peróxido de hidrogênio de forma que a geração de calor não ultrapasse a capacidade de resfriamento do sistema. O processo tem um ciclo que pode variar entre 8 e 12 horas para atingir a conversão desejada, fazendo com que a capacidade de produção seja dependente de investimentos relativamente pesados em reatores agitados mecanicamente, que apresentam diversos riscos de segurança. Estudos anteriores não exploram em profundidade algumas potenciais áreas de otimização e redução das limitações dos processos, como a intensificação da transferência de calor, que permite a redução do tempo total de reação. Este trabalho avalia experimentalmente e propõe uma modelagem para a reação de epoxidação do óleo de soja em condições de remoção de calor máxima, o que permite que os reagentes sejam adicionados em sua totalidade no início da reação, simplificando o processo. Um modelo foi ajustado aos dados experimentais. O coeficiente de troca térmica, cuja estimativa teórica pode incorrer em erros significativos, foi calculado a partir de dados empíricos e incluído na modelagem, acrescentando um fator de variabilidade importante em relação aos modelos anteriores. O estudo propõe uma base teórica para potenciais alternativas aos processos adotados atualmente, buscando entender as condições necessárias e viáveis em escala industrial para redução do ciclo da reação, podendo inclusive apoiar potenciais estudos de implementação de um reator contínuo, mais eficiente e seguro, para esse processo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho dimensionou um receptor de cavidade para uso como reator químico de um ciclo de conversão de energia solar para energia química. O vetor energético proposto é o hidrogênio. Isso implica que a energia solar é concentrada em um dispositivo que absorve a radiação térmica e a transforma em energia térmica para ativar uma reação química endotérmica. Essa reação transforma o calor útil em gás hidrogênio, que por sua vez pode ser utilizado posteriormente para geração de outras formas de energia. O primeiro passo foi levantar os pares metal/óxido estudados na literatura, cuja finalidade é ativar um ciclo termoquímico que possibilite produção de hidrogênio. Esses pares foram comparados com base em quatro parâmetros, cuja importância determina o dimensionamento de um receptor de cavidade. São eles: temperatura da reação; estado físico de reagentes e produtos; desgaste do material em ciclos; taxa de reação de hidrólise e outros aspectos. O par escolhido com a melhor avaliação no conjunto dos parâmetros foi o tungstênio e o trióxido de tungstênio (W/WO3). Com base na literatura, foi determinado um reator padrão, cujas características foram analisadas e suas consequências no funcionamento do receptor de cavidade. Com essa análise, determinaram-se os principais parâmetros de projeto, ou seja, a abertura da cavidade, a transmissividade da janela, e as dimensões da cavidade. Com base nos resultados anteriores, estabeleceu-se um modelo de dimensionamento do sistema de conversão de energia solar em energia útil para um processo químico. Ao se analisar um perfil de concentração de energia solar, calculou-se as eficiências de absorção e de perdas do receptor, em função da área de abertura de um campo de coleta de energia solar e da radiação solar disponível. Esse método pode ser empregado em conjunto com metodologias consagradas e dados de previsão de disponibilidade solar para estudos de concentradores de sistemas de produção de hidrogênio a partir de ciclos termoquímicos.