18 resultados para Otimização de circuitos
Resumo:
RESUMO Simulações de aeroacústica computacional demandam uma quantidade considerável de tempo, o que torna complicada a realização de estudos paramétricos. O presente trabalho propõe uma metodologia viável para otimização aeroacústica. Através da análise numérica utilizando dinâmica dos fluidos computacional, foi estudada a aplicação de uma placa separadora desacoplada como método de controle passivo da esteira turbulenta de um cilindro e avaliou-se a irradiação de ruído causado pela interação do escoamento com ambos os corpos, empregando ferramentas de aeroacústica computacional baseadas no método de Ffowcs-Williams e Hawkings. Algumas abordagens distintas de metodologias de otimização de projeto foram aplicadas neste problema, com o objetivo de chegar a uma configuração otimizada que permita a redução do nível sonoro ao longe. Assim, utilizando uma ferramenta de otimização multidisciplinar, pode-se avaliar a capacidade de modelos heurísticos e a grande vantagem do emprego de algoritmos baseados em método de superfície de resposta quando aplicados em um problema não linear, pois requerem a avaliação de um menor número de alternativas para se obter um ponto ótimo. Além disso, foi possível identificar e agrupar os resultados em 5 clusters baseados em seus parâmetros geométricos, nível de pressão sonora global e o valor quadrático médio do coeficiente de arrasto, confirmando a eficiência da aplicação de placas separadoras longas desacopladas posicionadas próximas ao cilindro na estabilização da esteira turbulenta, enquanto que o posicionamento de placas acima de um espaçamento crítico aumentou o nível de pressão acústica irradiado devido à formação de vórtices no espaço entre o cilindro e a placa separadora.
Resumo:
A comercialização de energia elétrica de fontes renováveis, ordinariamente, constitui-se uma atividade em que as operações são estruturadas sob condições de incerteza, por exemplo, em relação ao preço \"spot\" no mercado de curto prazo e a geração de energia dos empreendimentos. Deriva desse fato a busca dos agentes pela formulação de estratégias e utilização de ferramentais para auxiliá-los em suas tomadas de decisão, visando não somente o retorno financeiro, mas também à mitigação dos riscos envolvidos. Análises de investimentos em fontes renováveis compartilham de desafios similares. Na literatura, o estudo da tomada de decisão considerada ótima sob condições de incerteza se dá por meio da aplicação de técnicas de programação estocástica, que viabiliza a modelagem de problemas com variáveis randômicas e a obtenção de soluções racionais, de interesse para o investidor. Esses modelos permitem a incorporação de métricas de risco, como por exemplo, o Conditional Value-at-Risk, a fim de se obter soluções ótimas que ponderem a expectativa de resultado financeiro e o risco associado da operação, onde a aversão ao risco do agente torna-se um condicionante fundamental. O objetivo principal da Tese - sob a ótica dos agentes geradores, consumidores e comercializadores - é: (i) desenvolver e implementar modelos de otimização em programação linear estocástica com métrica CVaR associada, customizados para cada um desses agentes; e (ii) aplicá-los na análise estratégica de operações como forma de apresentar alternativas factíveis à gestão das atividades desses agentes e contribuir com a proposição de um instrumento conceitualmente robusto e amigável ao usuário, para utilização por parte das empresas. Nesse contexto, como antes frisado, dá-se ênfase na análise do risco financeiro dessas operações por meio da aplicação do CVaR e com base na aversão ao risco do agente. Considera-se as fontes renováveis hídrica e eólica como opções de ativos de geração, de forma a estudar o efeito de complementaridade entre fontes distintas e entre sites distintos da mesma fonte, avaliando-se os rebatimentos nas operações.
Resumo:
Este trabalho apresenta uma nova metodologia para otimizar carteiras de ativos financeiros. A metodologia proposta, baseada em interpoladores universais tais quais as Redes Neurais Artificiais e a Krigagem, permite aproximar a superfície de risco e consequentemente a solução do problema de otimização associado a ela de forma generalizada e aplicável a qualquer medida de risco disponível na literatura. Além disto, a metodologia sugerida permite que sejam relaxadas hipóteses restritivas inerentes às metodologias existentes, simplificando o problema de otimização e permitindo que sejam estimados os erros na aproximação da superfície de risco. Ilustrativamente, aplica-se a metodologia proposta ao problema de composição de carteiras com a Variância (controle), o Valor-em-Risco (VaR) e o Valor-em-Risco Condicional (CVaR) como funções objetivo. Os resultados são comparados àqueles obtidos pelos modelos de Markowitz e Rockafellar, respectivamente.