2 resultados para modelo estatístico para macromoléculas
em Repositório Aberto da Universidade Aberta de Portugal
Resumo:
O prognóstico da perda dentária é um dos principais problemas na prática clínica de medicina dentária. Um dos principais fatores prognósticos é a quantidade de suporte ósseo do dente, definido pela área da superfície radicular dentária intraóssea. A estimação desta grandeza tem sido realizada por diferentes metodologias de investigação com resultados heterogéneos. Neste trabalho utilizamos o método da planimetria com microtomografia para calcular a área da superfície radicular (ASR) de uma amostra de cinco dentes segundos pré-molares inferiores obtida da população portuguesa, com o objetivo final de criar um modelo estatístico para estimar a área de superfície radicular intraóssea a partir de indicadores clínicos da perda óssea. Por fim propomos um método para aplicar os resultados na prática. Os dados referentes à área da superfície radicular, comprimento total do dente (CT) e dimensão mésio-distal máxima da coroa (MDeq) serviram para estabelecer as relações estatísticas entre variáveis e definir uma distribuição normal multivariada. Por fim foi criada uma amostra de 37 observações simuladas a partir da distribuição normal multivariada definida e estatisticamente idênticas aos dados da amostra de cinco dentes. Foram ajustados cinco modelos lineares generalizados aos dados simulados. O modelo estatístico foi selecionado segundo os critérios de ajustamento, preditibilidade, potência estatística, acurácia dos parâmetros e da perda de informação, e validado pela análise gráfica de resíduos. Apoiados nos resultados propomos um método em três fases para estimação área de superfície radicular perdida/remanescente. Na primeira fase usamos o modelo estatístico para estimar a área de superfície radicular, na segunda estimamos a proporção (decis) de raiz intraóssea usando uma régua de Schei adaptada e na terceira multiplicamos o valor obtido na primeira fase por um coeficiente que representa a proporção de raiz perdida (ASRp) ou da raiz remanescente (ASRr) para o decil estimado na segunda fase. O ponto forte deste estudo foi a aplicação de metodologia estatística validada para operacionalizar dados clínicos na estimação de suporte ósseo perdido. Como pontos fracos consideramos a aplicação destes resultados apenas aos segundos pré-molares mandibulares e a falta de validação clínica.
Resumo:
Os avanços tecnológicos e científicos, na área da saúde, têm vindo a aliar áreas como a Medicina e a Matemática, cabendo à ciência adequar de forma mais eficaz os meios de investigação, diagnóstico, monitorização e terapêutica. Os métodos desenvolvidos e os estudos apresentados nesta dissertação resultam da necessidade de encontrar respostas e soluções para os diferentes desafios identificados na área da anestesia. A índole destes problemas conduz, necessariamente, à aplicação, adaptação e conjugação de diferentes métodos e modelos das diversas áreas da matemática. A capacidade para induzir a anestesia em pacientes, de forma segura e confiável, conduz a uma enorme variedade de situações que devem ser levadas em conta, exigindo, por isso, intensivos estudos. Assim, métodos e modelos de previsão, que permitam uma melhor personalização da dosagem a administrar ao paciente e por monitorizar, o efeito induzido pela administração de cada fármaco, com sinais mais fiáveis, são fundamentais para a investigação e progresso neste campo. Neste contexto, com o objetivo de clarificar a utilização em estudos na área da anestesia de um ajustado tratamento estatístico, proponho-me abordar diferentes análises estatísticas para desenvolver um modelo de previsão sobre a resposta cerebral a dois fármacos durante sedação. Dados obtidos de voluntários serão utilizados para estudar a interação farmacodinâmica entre dois fármacos anestésicos. Numa primeira fase são explorados modelos de regressão lineares que permitam modelar o efeito dos fármacos no sinal cerebral BIS (índice bispectral do EEG – indicador da profundidade de anestesia); ou seja estimar o efeito que as concentrações de fármacos têm na depressão do eletroencefalograma (avaliada pelo BIS). Na segunda fase deste trabalho, pretende-se a identificação de diferentes interações com Análise de Clusters bem como a validação do respetivo modelo com Análise Discriminante, identificando grupos homogéneos na amostra obtida através das técnicas de agrupamento. O número de grupos existentes na amostra foi, numa fase exploratória, obtido pelas técnicas de agrupamento hierárquicas, e a caracterização dos grupos identificados foi obtida pelas técnicas de agrupamento k-means. A reprodutibilidade dos modelos de agrupamento obtidos foi testada através da análise discriminante. As principais conclusões apontam que o teste de significância da equação de Regressão Linear indicou que o modelo é altamente significativo. As variáveis propofol e remifentanil influenciam significativamente o BIS e o modelo melhora com a inclusão do remifentanil. Este trabalho demonstra ainda ser possível construir um modelo que permite agrupar as concentrações dos fármacos, com base no efeito no sinal cerebral BIS, com o apoio de técnicas de agrupamento e discriminantes. Os resultados desmontram claramente a interacção farmacodinâmica dos dois fármacos, quando analisamos o Cluster 1 e o Cluster 3. Para concentrações semelhantes de propofol o efeito no BIS é claramente diferente dependendo da grandeza da concentração de remifentanil. Em suma, o estudo demostra claramente, que quando o remifentanil é administrado com o propofol (um hipnótico) o efeito deste último é potenciado, levando o sinal BIS a valores bastante baixos.