5 resultados para Previsão Estatística
em Repositório Aberto da Universidade Aberta de Portugal
Resumo:
Os avanços tecnológicos e científicos, na área da saúde, têm vindo a aliar áreas como a Medicina e a Matemática, cabendo à ciência adequar de forma mais eficaz os meios de investigação, diagnóstico, monitorização e terapêutica. Os métodos desenvolvidos e os estudos apresentados nesta dissertação resultam da necessidade de encontrar respostas e soluções para os diferentes desafios identificados na área da anestesia. A índole destes problemas conduz, necessariamente, à aplicação, adaptação e conjugação de diferentes métodos e modelos das diversas áreas da matemática. A capacidade para induzir a anestesia em pacientes, de forma segura e confiável, conduz a uma enorme variedade de situações que devem ser levadas em conta, exigindo, por isso, intensivos estudos. Assim, métodos e modelos de previsão, que permitam uma melhor personalização da dosagem a administrar ao paciente e por monitorizar, o efeito induzido pela administração de cada fármaco, com sinais mais fiáveis, são fundamentais para a investigação e progresso neste campo. Neste contexto, com o objetivo de clarificar a utilização em estudos na área da anestesia de um ajustado tratamento estatístico, proponho-me abordar diferentes análises estatísticas para desenvolver um modelo de previsão sobre a resposta cerebral a dois fármacos durante sedação. Dados obtidos de voluntários serão utilizados para estudar a interação farmacodinâmica entre dois fármacos anestésicos. Numa primeira fase são explorados modelos de regressão lineares que permitam modelar o efeito dos fármacos no sinal cerebral BIS (índice bispectral do EEG – indicador da profundidade de anestesia); ou seja estimar o efeito que as concentrações de fármacos têm na depressão do eletroencefalograma (avaliada pelo BIS). Na segunda fase deste trabalho, pretende-se a identificação de diferentes interações com Análise de Clusters bem como a validação do respetivo modelo com Análise Discriminante, identificando grupos homogéneos na amostra obtida através das técnicas de agrupamento. O número de grupos existentes na amostra foi, numa fase exploratória, obtido pelas técnicas de agrupamento hierárquicas, e a caracterização dos grupos identificados foi obtida pelas técnicas de agrupamento k-means. A reprodutibilidade dos modelos de agrupamento obtidos foi testada através da análise discriminante. As principais conclusões apontam que o teste de significância da equação de Regressão Linear indicou que o modelo é altamente significativo. As variáveis propofol e remifentanil influenciam significativamente o BIS e o modelo melhora com a inclusão do remifentanil. Este trabalho demonstra ainda ser possível construir um modelo que permite agrupar as concentrações dos fármacos, com base no efeito no sinal cerebral BIS, com o apoio de técnicas de agrupamento e discriminantes. Os resultados desmontram claramente a interacção farmacodinâmica dos dois fármacos, quando analisamos o Cluster 1 e o Cluster 3. Para concentrações semelhantes de propofol o efeito no BIS é claramente diferente dependendo da grandeza da concentração de remifentanil. Em suma, o estudo demostra claramente, que quando o remifentanil é administrado com o propofol (um hipnótico) o efeito deste último é potenciado, levando o sinal BIS a valores bastante baixos.
Resumo:
A capacidade de adaptação e rapidez de decisão, distinguem as empresas que melhor conseguem competir e crescer no mercado global. Para atuar rapidamente, as organizações precisam de sistemas de informação cada vez mais eficazes, surgindo recentemente uma nova função considerada fundamental para as empresas, que é a de Cientista de Dados. É neste contexto e para responder aos desafios atuais e futuros, que surgem sistemas de informação cada vez mais avançados, suportados por modelos de análise e visualização estatística. Este trabalho consiste em criar uma metodologia de desenvolvimento de modelos de previsão de incumprimento e perfil do consumidor, aplicado a cartões de crédito, com base numa exposição de análise comportamental, utilizando técnicas de análise de sobrevivência. São definidas técnicas de tratamento dos dados recolhidos, estimado modelo não-paramétrico de Kaplan-Meier e vários modelos de Cox de riscos proporcionais. Com recurso à curva ROC, dependente do tempo, à AUC e ao índice de Gini, conclui-se que o modelo final apresenta um desempenho positivo para identificar os clientes em situação de incumprimento ou com propensão a incumprir.
Resumo:
A presente dissertação visa uma aplicação de séries temporais, na modelação do índice financeiro FTSE100. Com base na série de retornos, foram estudadas a estacionaridade através do teste Phillips-Perron, a normalidade pelo Teste Jarque-Bera, a independência analisada pela função de autocorrelação e pelo teste de Ljung-Box, e utilizados modelos GARCH, com a finalidade de modelar e prever a variância condicional (volatilidade) da série financeira em estudo. As séries temporais financeiras apresentam características peculiares, revelando períodos mais voláteis do que outros. Esses períodos encontram-se distribuídos em clusters, sugerindo um grau de dependência no tempo. Atendendo à presença de tais grupos de volatilidade (não linearidade), torna-se necessário o recurso a modelos heterocedásticos condicionais, isto é, modelos que consideram que a variância condicional de uma série temporal não é constante e dependente do tempo. Face à grande variabilidade das séries temporais financeiras ao longo do tempo, os modelos ARCH (Engle, 1982) e a sua generalização GARCH (Bollerslev, 1986) revelam-se os mais adequados para o estudo da volatilidade. Em particular, estes modelos não lineares apresentam uma variância condicional aleatória, sendo possível, através do seu estudo, estimar e prever a volatilidade futura da série. Por fim, é apresentado o estudo empírico que se baseia numa proposta de modelação e previsão de um conjunto de dados reais do índice financeiro FTSE100.