95 resultados para ABERRATIONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the interocular symmetry of optical, biometric and biomechanical characteristics between the fellow eyes of myopic anisometropes. Methods: Thirty-four young, healthy myopic anisometropic adults (≥ 1 D spherical equivalent difference between eyes) without amblyopia or strabismus were recruited. A range of biometric and optical parameters were measured in both eyes of each subject including; axial length, ocular aberrations, intraocular pressure (IOP), corneal topography and biomechanics. Ocular sighting dominance was also measured. Results: Mean absolute spherical equivalent anisometropia was 1.70 ± 0.74 D and there was a strong correlation between the degree of anisometropia and the interocular difference in axial length (r = 0.81, p < 0.001). The more and less myopic eyes displayed a high degree of interocular symmetry for the majority of biometric, biomechanical and optical parameters measured. When the level of anisometropia exceeded 1.75 D, the more myopic eye was more likely to be the dominant sighting eye than for lower levels of anisometropia (p=0.002). Subjects with greater levels of anisometropia (> 1.75 D) also showed high levels of correlation between the dominant and non-dominant eyes in their biometric, biomechanical and optical characteristics. Conclusions: Although significantly different in axial length, anisometropic eyes display a high degree of interocular symmetry for a range of anterior eye biometrics and optical parameters. For higher levels of anisometropia, the more myopic eye tends to be the dominant sighting eye.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal models of refractive error development have demonstrated that visual experience influences ocular growth. In a variety of species, axial anisometropia (i.e. a difference in the length of the two eyes) can be induced through unilateral occlusion, image degradation or optical manipulation. In humans, anisometropia may occur in isolation or in association with amblyopia, strabismus or unilateral pathology. Non-amblyopic myopic anisometropia represents an interesting anomaly of ocular growth, since the two eyes within one visual system have grown to different endpoints. These experiments have investigated a range of biometric, optical and mechanical properties of anisometropic eyes (with and without amblyopia) with the aim of improving our current understanding of asymmetric refractive error development. In the first experiment, the interocular symmetry in 34 non-amblyopic myopic anisometropes (31 Asian, 3 Caucasian) was examined during relaxed accommodation. A high degree of symmetry was observed between the fellow eyes for a range of optical, biometric and biomechanical measurements. When the magnitude of anisometropia exceeded 1.75 D, the more myopic eye was almost always the sighting dominant eye. Further analysis of the optical and biometric properties of the dominant and non-dominant eyes was conducted to determine any related factors but no significant interocular differences were observed with respect to best-corrected visual acuity, corneal or total ocular aberrations during relaxed accommodation. Given the high degree of symmetry observed between the fellow eyes during distance viewing in the first experiment and the strong association previously reported between near work and myopia development, the aim of the second experiment was to investigate the symmetry between the fellow eyes of the same 34 myopic anisometropes following a period of near work. Symmetrical changes in corneal and total ocular aberrations were observed following a short reading task (10 minutes, 2.5 D accommodation demand) which was attributed to the high degree of interocular symmetry for measures of anterior eye morphology, and corneal biomechanics. These changes were related to eyelid shape and position during downward gaze, but gave no clear indication of factors associated with near work that might cause asymmetric eye growth within an individual. Since the influence of near work on eye growth is likely to be most obvious during, rather than following near tasks, in the third experiment the interocular symmetry of the optical and biometric changes was examined during accommodation for 11 myopic anisometropes. The changes in anterior eye biometrics associated with accommodation were again similar between the eyes, resulting in symmetrical changes in the optical characteristics. However, the more myopic eyes exhibited slightly greater amounts of axial elongation during accommodation which may be related to the force exerted by the ciliary muscle. This small asymmetry in axial elongation we observed between the eyes may be due to interocular differences in posterior eye structure, given that the accommodative response was equal between eyes. Using ocular coherence tomography a reduced average choroidal thickness was observed in the more myopic eyes compared to the less myopic eyes of these subjects. The interocular difference in choroidal thickness was correlated with the magnitude of spherical equivalent and axial anisometropia. The symmetry in optics and biometrics between fellow eyes which have undergone significantly different visual development (i.e. anisometropic subjects with amblyopia) is also of interest with respect to refractive error development. In the final experiment the influence of altered visual experience upon corneal and ocular higher-order aberrations was investigated in 21 amblyopic subjects (8 refractive, 11 strabismic and 2 form deprivation). Significant differences in aberrations were observed between the fellow eyes, which varied according to the type of amblyopia. Refractive amblyopes displayed significantly higher levels of 4th order corneal aberrations (spherical aberration and secondary astigmatism) in the amblyopic eye compared to the fellow non-amblyopic eye. Strabismic amblyopes exhibited significantly higher levels of trefoil, a third order aberration, in the amblyopic eye for both corneal and total ocular aberrations. The results of this experiment suggest that asymmetric visual experience during development is associated with asymmetries in higher-order aberrations, proportional to the magnitude of anisometropia and dependent upon the amblyogenic factor. This suggests a direct link between the development of higher-order optical characteristics of the human eye and visual feedback. The results from these experiments have shown that a high degree of symmetry exists between the fellow eyes of non-amblyopic myopic anisometropes for a range of biomechanical, biometric and optical parameters for different levels of accommodation and following near work. While a single specific optical or biomechanical factor that is consistently associated with asymmetric refractive error development has not been identified, the findings from these studies suggest that further research into the association between ocular dominance, choroidal thickness and higher-order aberrations with anisometropia may improve our understanding of refractive error development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: James Clerk Maxwell is usually recognized as being the first, in 1854, to consider using inhomogeneous media in optical systems. However, some fifty years earlier Thomas Young, stimulated by his interest in the optics of the eye and accommodation, had already modeled some applications of gradient-index optics. These applications included using an axial gradient to provide spherical aberration-free optics and a spherical gradient to describe the optics of the atmosphere and the eye lens. We evaluated Young’s contributions. Method: We attempted to derive Young’s equations for axial and spherical refractive index gradients. Raytracing was used to confirm accuracy of formula. Results: We did not confirm Young’s equation for the axial gradient to provide aberration-free optics, but derived a slightly different equation. We confirmed the correctness of his equations for deviation of rays in a spherical gradient index and for the focal length of a lens with a nucleus of fixed index surrounded by a cortex of reducing index towards the edge. Young claimed that the equation for focal length applied to a lens with part of the constant index nucleus of the sphere removed, such that the loss of focal length was a quarter of the thickness removed, but this is not strictly correct. Conclusion: Young’s theoretical work in gradient-index optics received no acknowledgement from either his contemporaries or later authors. While his model of the eye lens is not an accurate physiological description of the human lens, with the index reducing least quickly at the edge, it represented a bold attempt to approximate the characteristics of the lens. Thomas Young’s work deserves wider recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contact lenses are a common method for the correction of refractive errors of the eye. While there have been significant advancements in contact lens designs and materials over the past few decades, the lenses still represent a foreign object in the ocular environment and may lead to physiological as well as mechanical effects on the eye. When contact lenses are placed in the eye, the ocular anatomical structures behind and in front of the lenses are directly affected. This thesis presents a series of experiments that investigate the mechanical and physiological effects of the short-term use of contact lenses on anterior and posterior corneal topography, corneal thickness, the eyelids, tarsal conjunctiva and tear film surface quality. The experimental paradigm used in these studies was a repeated measures, cross-over study design where subjects wore various types of contact lenses on different days and the lenses were varied in one or more key parameters (e.g. material or design). Both, old and newer lens materials were investigated, soft and rigid lenses were used, high and low oxygen permeability materials were tested, toric and spherical lens designs were examined, high and low powers and small and large diameter lenses were used in the studies. To establish the natural variability in the ocular measurements used in the studies, each experiment also contained at least one “baseline” day where an identical measurement protocol was followed, with no contact lenses worn. In this way, changes associated with contact lens wear were considered in relation to those changes that occurred naturally during the 8 hour period of the experiment. In the first study, the regional distribution and magnitude of change in corneal thickness and topography was investigated in the anterior and posterior cornea after short-term use of soft contact lenses in 12 young adults using the Pentacam. Four different types of contact lenses (Silicone hydrogel/ Spherical/–3D, Silicone Hydrogel/Spherical/–7D, Silicone Hydrogel/Toric/–3D and HEMA/Toric/–3D) of different materials, designs and powers were worn for 8 hours each, on 4 different days. The natural diurnal changes in corneal thickness and curvature were measured on two separate days before any contact lens wear. Significant diurnal changes in corneal thickness and curvature within the duration of the study were observed and these were taken into consideration for calculating the contact lens induced corneal changes. Corneal thickness changed significantly with lens wear and the greatest corneal swelling was seen with the hydrogel (HEMA) toric lens with a noticeable regional swelling of the cornea beneath the stabilization zones, the thickest regions of the lenses. The anterior corneal surface generally showed a slight flattening with lens wear. All contact lenses resulted in central posterior corneal steepening, which correlated with the relative degree of corneal swelling. The corneal swelling induced by the silicone hydrogel contact lenses was typically less than the natural diurnal thinning of the cornea over this same period (i.e. net thinning). This highlights why it is important to consider the natural diurnal variations in corneal thickness observed from morning to afternoon to accurately interpret contact lens induced corneal swelling. In the second experiment, the relative influence of lenses of different rigidity (polymethyl methacrylate – PMMA, rigid gas permeable – RGP and silicone hydrogel – SiHy) and diameters (9.5, 10.5 and 14.0) on corneal thickness, topography, refractive power and wavefront error were investigated. Four different types of contact lenses (PMMA/9.5, RGP/9.5, RGP/10.5, SiHy/14.0), were worn by 14 young healthy adults for a period of 8 hours on 4 different days. There was a clear association between fluorescein fitting pattern characteristics (i.e. regions of minimum clearance in the fluorescein pattern) and the resulting corneal shape changes. PMMA lenses resulted in significant corneal swelling (more in the centre than periphery) along with anterior corneal steepening and posterior flattening. RGP lenses, on the other hand, caused less corneal swelling (more in the periphery than centre) along with opposite effects on corneal curvature, anterior corneal flattening and posterior steepening. RGP lenses also resulted in a clinically and statistically significant decrease in corneal refractive power (ranging from 0.99 to 0.01 D), large enough to affect vision and require adjustment in the lens power. Wavefront analysis also showed a significant increase in higher order aberrations after PMMA lens wear, which may partly explain previous reports of "spectacle blur" following PMMA lens wear. We further explored corneal curvature, thickness and refractive changes with back surface toric and spherical RGP lenses in a group of 6 subjects with toric corneas. The lenses were worn for 8 hours and measurements were taken before and after lens wear, as in previous experiments. Both lens types caused anterior corneal flattening and a decrease in corneal refractive power but the changes were greater with the spherical lens. The spherical lens also caused a significant decrease in WTR astigmatism (WRT astigmatism defined as major axis within 30 degrees of horizontal). Both the lenses caused slight posterior corneal steepening and corneal swelling, with a greater effect in the periphery compared to the central cornea. Eyelid position, lid-wiper and tarsal conjunctival staining were also measured in Experiment 2 after short-term use of the rigid and SiHy contact lenses. Digital photos of the external eyes were captured for lid position analysis. The lid-wiper region of the marginal conjunctiva was stained using fluorescein and lissamine green dyes and digital photos were graded by an independent masked observer. A grading scale was developed in order to describe the tarsal conjunctival staining. A significant decrease in the palpebral aperture height (blepharoptosis) was found after wearing of PMMA/9.5 and RGP/10.5 lenses. All three rigid contact lenses caused a significant increase in lid-wiper and tarsal staining after 8 hours of lens wear. There was also a significant diurnal increase in tarsal staining, even without contact lens wear. These findings highlight the need for better contact lens edge design to minimise the interactions between the lid and contact lens edge during blinking and more lubricious contact lens surfaces to reduce ocular surface micro-trauma due to friction and for. Tear film surface quality (TFSQ) was measured using a high-speed videokeratoscopy technique in Experiment 2. TFSQ was worse with all the lenses compared to baseline (PMMA/9.5, RGP/9.5, RGP/10.5, and SiHy/14) in the afternoon (after 8 hours) during normal and suppressed blinking conditions. The reduction in TFSQ was similar with all the contact lenses used, irrespective of their material and diameter. An unusual pattern of change in TFSQ in suppressed blinking conditions was also found. The TFSQ with contact lens was found to decrease until a certain time after which it improved to a value even better than the bare eye. This is likely to be due to the tear film drying completely over the surface of the contact lenses. The findings of this study also show that there is still a scope for improvement in contact lens materials in terms of better wettability and hydrophilicity in order to improve TFSQ and patient comfort. These experiments showed that a variety of changes can occur in the anterior eye as a result of the short-term use of a range of commonly used contact lens types. The greatest corneal changes occurred with lenses manufactured from older HEMA and PMMA lens materials, whereas modern SiHy and rigid gas permeable materials caused more subtle changes in corneal shape and thickness. All lenses caused signs of micro-trauma to the eyelid wiper and palpebral conjunctiva, although rigid lenses appeared to cause more significant changes. Tear film surface quality was also significantly reduced with all types of contact lenses. These short-term changes in the anterior eye are potential markers for further long term changes and the relative differences between lens types that we have identified provide an indication of areas of contact lens design and manufacture that warrant further development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim of this cross-over study was to investigate the changes in corneal thickness, anterior and posterior corneal topography, corneal refractive power and ocular wavefront aberrations, following the short term use of rigid contact lenses. Method: Fourteen participants wore 4 different types of contact lenses (RGP lenses of 9.5 mm and 10.5 mm diameter, and for comparison a PMMA lens of 9.5 mm diameter and a soft silicone hydrogel lens) on 4 different days for a period of 8 h on each day. Measures were collected before and after contact lens wear and additionally on a baseline day. Results: Anterior corneal curvature generally showed a flattening with both of the RGP lenses and a steepening with the PMMA lens. A significant negative correlation was found between the change in corneal swelling and central and peripheral posterior corneal curvature (all p ≤ 0.001). RGP contact lenses caused a significant decrease in corneal refractive power (hyperopic shift) of approximately 0.5 D. The PMMA contact lenses caused the greatest corneal swelling in both the central (27.92 ± 15.49 μm, p < 0.001) and peripheral (17.78 ± 12.11 μm, p = 0.001) corneal regions, a significant flattening of the posterior cornea and an increase in ocular aberrations (all p ≤ 0.05). Conclusion: The corneal swelling associated with RGP lenses was relatively minor, but there was slight central corneal flattening and a clinically significant hyperopic change in corneal refractive power after the first day of lens wear. The PMMA contact lenses resulted in significant corneal swelling and reduced optical performance of the cornea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To examine the symmetry of corneal changes following near work in the fellow eyes of non-amblyopic myopic anisometropes. Methods: Thirty-four non-amblyopic, myopic anisometropes (minimum 1 D spherical equivalent anisometropia) had corneal topography measured before and after a controlled near work task. Subjects were positioned in a headrest to minimise head movements and read continuous text on a computer monitor for 10 minutes at an angle of 25 degrees downward gaze and an accommodation demand of 2.5 D. Measures of the morphology of the palpebral aperture during primary and downward gaze were also obtained. Results: The more and less myopic eyes exhibited a high degree of interocular symmetry for measures of palpebral aperture morphology during both primary and downward gaze. Following the near work task, fellow eyes also displayed a symmetrical change in superior corneal topography (hyperopic defocus) which correlated with the position of the upper eyelid during downward gaze. Greater changes in the spherical corneal power vector (M) following reading were associated with narrower palpebral aperture during downward gaze (p = 0.07 for more myopic and p = 0.03 for less myopic eyes). A significantly greater change in J0 (an increase in against the rule astigmatism) was observed in the more myopic eyes (-0.04 ± 0.04 D) compared to the less myopic eyes (-0.02 ± 0.06 D) over a 6 mm corneal diameter (p = 0.01). Conclusions: Changes in corneal topography following near work are highly symmetrical between the fellow eyes of myopic anisometropes due to the interocular symmetry of the palpebral aperture. However, the more myopic eye exhibits changes in corneal astigmatism of greater magnitude compared to the less myopic eye.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been a low level of interest in peripheral aberrations and corresponding image quality for over 200 years. Most work has been concerned with the second-order aberrations of defocus and astigmatism that can be corrected with conventional lenses. Studies have found high levels of aberration, often amounting to several dioptres, even in eyes with only small central defocus and astigmatism. My investigations have contributed to understanding shape changes in the eye with increases in myopia, changes in eye optics with ageing, and how surgical interventions intended to correct central refractive errors have unintended effects on peripheral optics. My research group has measured peripheral second- and higher-order aberrations over a 42° horizontal × 32° vertical diameter visual field. There is substantial variation in individual aberrations with age and pathology. While the higher-order aberrations in the periphery are usually small compared with second-order aberrations, they can be substantial and change considerably after refractive surgery. The thrust of my research in the next few years is to understand more about the peripheral aberrations of the human eye, to measure visual performance in the periphery and determine whether this can be improved by adaptive optics correction, to use measurements of peripheral aberrations to learn more about the optics of the eye and in particular the gradient index structure of the lens, and to investigate ways of increasing the size of the field of good retinal image quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skin tumors can arise as a result of cumulative genetic abnormalities, including chromosomal ­aberrations that can be described as either morphological (structural rearrangements) or molecular (copy number variations). Cytogenetic techniques have been used to examine both large and small chromosomal aberrations, and include karyotyping, comparative genomic hybridization, and fluorescence in situ hybridization. This chapter describes the recurrent aberrations associated with skin tumors, such as benign melanocytic nevi, melanoma, basal cell carcinoma, squamous cell carcinoma, actinic (solar) keratosis, Bowen’s disease, keratoacanthoma, Merkel cell carcinoma, dermatofibrosarcoma protuberans, and cutaneous lymphomas, as detected by cytogenetic methodologies. A significant number of genomic aberrations are shared across different subtypes of skin tumors, including structural and numerical alterations of chromosome 1, −3p, +3q, +6, +7, +8q, −9p, +9q, −10, −17p, +17q and +20. Aberrations specific to certain skin cancers have also been detected, and include: loss of 18q in squamous cell carcinoma, but not its precursor, actinic keratosis; loss of 9q22 in sporadic basal cell carcinoma; and translocation involving 17q22 and 22q13 in dermatofibrosarcoma protuberans. These regions contain a number of potential candidate genes that are involved in aspects of cell signaling, proliferation, differentiation, and apoptosis. Cytogenetic methodologies continue to evolve with the advent of array-based comparative genomic hybridization, copy number variation microarrays, and next-generation sequencing. It is envisioned that cytogenetic analysis will continue to be employed for identification and further exploration of novel chromosomal regions and associated genes that drive skin tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytogenetic analysis of melanoma and nonmelanoma skin cancers has revealed recurrent aberrations, the frequency of which is reflective of malignant potential. Highly aberrant karyotypes are seen in melanoma, squamous cell carcinoma, solar keratosis and Merkel cell carcinoma with more stable karyotypes seen in basal cell carcinoma, keratoacanthoma, Bowen’s disease, dermatofibrosarcomarotuberans and cutaneous lymphomas. Some aberrations were common amongst a number of skin cancer types including rearrangements and numerical abnormalities of chromosome 1, −3p, +3q, partial or entire trisomy 6, trisomy 7, +8q, −9p, +9q, partial or entire loss of chromosome 10, −17p, + 17q and partial or entire gain of chromosome 20. Combination of cytogenetic analysis with other molecular genetic techniques has enabled the identification of not only aberrant chromosomal regions, but also the genes that contribute to a malignant phenotype. This review provides a comprehensive summary of the pertinent cytogenetic aberrations associated with a variety of melanoma and nonmelanoma skin cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the advent of cytogenetic analysis, knowledge about fundamental aspects of cancer biology has increased, allowing the processes of cancer development and progression to be more fully understood and appreciated. Classical cytogenetic analysis of solid tumors had been considered difficult, but new advances in culturing techniques and the addition of new cytogenetic technologies have enabled a more comprehensive analysis of chromosomal aberrations associated with solid tumors. Our purpose in this review is to discuss the cytogenetic findings on a number of nonmelanoma skin cancers, including squamous- and basal cell carcinomas, keratoacanthoma, squamous cell carcinoma in situ (Bowen's disease), and solar keratosis. Through classical cytogenetic techniques, as well as fluorescence-based techniques such as fluorescence in situ hybridization and comparative genomic hybridization, numerous chromosomal alterations have been identified. These aberrations may aid in further defining the stages and classifications of nonmelanoma skin cancer and also may implicate chromosomal regions involved in progression and metastatic potential. This information, along with the development of newer technologies (including laser capture microdissection and comparative genomic hybridization arrays) that allow for more refined analysis, will continue to increase our knowledge about the role of chromosomal events at all stages of cancer development and progression and, more specifically, about how they are associated with nonmelanoma skin cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to define genomic copy number changes associated with the development of basal cell carcinoma, we investigated 15 sporadic tumors by comparative genomic hybridization. With the incorporation of tissue microdissection and degenerate oligonucleotide primed-polymerase chain reaction we were able to isolate, and then universally amplify, DNA from the tumor type. This combined approach allows the investigation of chromosomal imbalances within a histologically distinct region of tissue. Using comparative genomic hybridization we have observed novel and recurrent chromosomal gains at 6p (47%), 6q (20%), 9p (20%), 7 (13%), and X (13%). In addition comparative genomic hybridization revealed regional loss on 9q in 33% of tested tumors encompassing 9q22.3 to which the putative tumor suppressor gene, Patched, has been mapped. The deletion of Patched has been indicated in the development of hereditary and sporadic basal cell carcinomas. The identification of these recurrent genetic aberrations suggests that basal cell carcinomas may not be as genetically stable as previously thought. Further investigation of these regions may lead to the identification of other genes responsible for basal cell carcinoma formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytogenetic analysis is a powerful tool that allows analysis of chromosomal aberrations associated with diseased states. In particular, a combination of cytogenetic techniques has allowed the identification of aberrations associated with cancer development, including cancers of the skin. This chapter provides a comprehensive overview of cytogenetic alterations in basal and squamous cell carcinomas of the skin. These two distinct lesions have altered karyotypes that are consistent with their malignant potential. Basal cell carcinomas, although relatively stable lesions, are highly associated with recurrent aberrations of chromosomes 6, 7, 9 and X, as detected by a number of cytogenetic techniques. Squamous cell carcinomas, on the other hand are associated with a much higher degree of instability, involving aberrations of chromosomes 3, 7, 8, 11, 13, 17 and 18, as detected using a number of cytogenetic techniques. Overall, the numbers and types of aberrations associated with basal and squamous cell carcinoma, define the characteristic behaviour associated with these lesions and identification of these aberrations may aid in the understanding of malignant potential, prognosis and treatment of these skin cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence of Squamous Cell Carcinoma (SCG) is growing in certain populations to the extent that it is now the most common skin lesion in young men and women in high ultraviolet exposure regions such as Queensland. In terms of incidence up to 40% of the Australian population over 40 years of age is thought to possess the precancerous Solar Keratosis (SK) lesion and with a small, but significant, chance of progression into SCC, understanding the genetic events that play a role in this process is essential. The major aims of this study were to analyse whole blood derived samples for DNA aberrations in genes associated with tumour development and cellular maintenance, with the ultimate aim of identifying genes associated with non-melanoma skin cancer development. More specifically the first aim of this project was to analyse the SDHD and MMP12 genes via Dual-Labelled Probe Real-Time PCR for copy number aberrations in an affected Solar Keratosis and control cohort. It was found that 12 samples had identifiable copy-number aberrations in either the SDHD or MMP12 gene (this means that a genetic section of either of these two genes is aberrantly amplified or deleted), with five of the samples exhibiting aberrations in both genes. The significance of this study is the contribution to the knowledge of the genetic pathways that are malformed in the progression and development of the pre-cancerous skin lesion Solar Keratosis. © 2008 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near work may play an important role in the development of myopia in the younger population. The prevalence of myopia has also been found to be higher in occupations that involve substantial near work tasks, for example in microscopists and textile workers. When nearwork is performed, it typically involves accommodation, convergence and downward gaze. A number of previous studies have examined the effects of accommodation and convergence on changes in the optics and biometrics of the eye in primary gaze. However, little is known about the influence of accommodation on the eye in downward gaze. This thesis is primarily concerned with investigating the changes in the eye during near work in downward gaze under natural viewing conditions. To measure wavefront aberrations in downward gaze under natural viewing conditions, we modified a commercial Shack-Hartmann wavefront sensor by adding a relay lens system to allow on-axis ocular aberration measurements in primary gaze and downward gaze, with binocular fixation. Measurements with the modified wavefront sensor in primary and downward gaze were validated against a conventional aberrometer using both a model eye and in 9 human subjects. We then conducted an experiment to investigate changes in ocular aberrations associated with accommodation in downward gaze over 10 mins in groups of both myopes (n = 14) and emmetropes (n =12) using the modified Shack-Hartmann wavefront sensor. During the distance accommodation task, small but significant changes in refractive power (myopic shift) and higher order aberrations were observed in downward gaze compared to primary gaze. Accommodation caused greater changes in higher order aberrations (in particular coma and spherical aberration) in downward gaze than primary gaze, and there was evidence that the changes in certain aberrations with accommodation over time were different in downward gaze compared to primary gaze. There were no obvious systematic differences in higher order aberrations between refractive error groups during accommodation or downward gaze for fixed pupils. However, myopes exhibited a significantly greater change in higher order aberrations (in particular spherical aberration) than emmetropes for natural pupils after 10 mins of a near task (5 D accommodation) in downward gaze. These findings indicated that ocular aberrations change from primary to downward gaze, particularly with accommodation. To understand the mechanism underlying these changes in greater detail, we then extended this work to examine the characteristics of the corneal optics, internal optics, anterior biometrics and axial length of the eye during a near task, in downward gaze, over 10 mins. Twenty young adult subjects (10 emmetropes and 10 myopes) participated in this study. To measure corneal topography and ocular biometrics in downward gaze, a rotating Scheimpflug camera and an optical biometer were inclined on a custom built, height and tilt adjustable table. We found that both corneal optics and internal optics change with downward gaze, resulting in a myopic shift (~0.10 D) in the spherical power of the eye. The changes in corneal optics appear to be due to eyelid pressure on the anterior surface of the cornea, whereas the changes in the internal optics (an increase in axial length and a decrease in anterior chamber depth) may be associated with movement of the crystalline lens, under the action of gravity, and the influence of altered biomechanical forces from the extraocular muscles on the globe with downward gaze. Changes in axial length with accommodation were significantly greater in downward gaze than primary gaze (p < 0.05), indicating an increased effect of the mechanical forces from the ciliary muscle and extraocular muscles. A subsequent study was conducted to investigate the changes in anterior biometrics, axial length and choroidal thickness in nine cardinal gaze directions under the actions of the extraocular muscles. Ocular biometry measurements were obtained from 30 young adults (10 emmetropes, 10 low myopes and 10 moderate myopes) through a rotating prism with 15° deviation, along the foveal axis, using a non-contact optical biometer in each of nine different cardinal directions of gaze, over 5 mins. There was a significant influence of gaze angle and time on axial length (both p < 0.001), with the greatest axial elongation (+18 ± 8 μm) occurring with infero-nasal gaze (p < 0.001) and a slight decrease in axial length in superior gaze (−12 ± 17 μm) compared with primary gaze (p < 0.001). There was a significant correlation between refractive error (spherical equivalent refraction) and the mean change in axial length in the infero-nasal gaze direction (Pearson's R2 = 0.71, p < 0.001). To further investigate the relative effect of gravity and extraocular muscle force on the axial length, we measured axial length in 15° and 25° downward gaze with the biometer inclined on a tilting table that allowed gaze shifts to occur with either full head turn but no eye turn (reflects the effect of gravity), or full eye turn with no head turn (reflects the effect of extraocular muscle forces). We observed a significant axial elongation in 15° and 25° downward gaze in the full eye turn condition. However, axial length did not change significantly in downward gaze over 5 mins (p > 0.05) in the full head turn condition. The elongation of the axial length in downward gaze appears to be due to the influence of the extraocular muscles, since the effect was not present when head turn was used instead of eye turn. The findings of these experiments collectively show the dynamic characteristics of the optics and biometrics of the eye in downward gaze during a near task, over time. These were small but significant differences between myopic and emmetropic eyes in both the optical and biomechanical changes associated with shifts of gaze direction. These differences between myopes and emmetropes could arise as a consequence of excessive eye growth associated with myopia. However the potentially additive effects of repeated or long lasting near work activities employing infero-nasal gaze could also act to promote elongation of the eye due to optical and/or biomechanical stimuli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To examine between eye differences in corneal higher order aberrations and topographical characteristics in a range of refractive error groups. Methods: One hundred and seventy subjects were recruited including; 50 emmetropic isometropes, 48 myopic isometropes (spherical equivalent anisometropia ≤ 0.75 D), 50 myopic anisometropes (spherical equivalent anisometropia ≥ 1.00 D) and 22 keratoconics. The corneal topography of each eye was captured using the E300 videokeratoscope (Medmont, Victoria, Australia) and analyzed using custom written software. All left eye data were rotated about the vertical midline to account for enantiomorphism. Corneal height data were used to calculate the corneal wavefront error using a ray tracing procedure and fit with Zernike polynomials (up to and including the eighth radial order). The wavefront was centred on the line of sight by using the pupil offset value from the pupil detection function in the videokeratoscope. Refractive power maps were analysed to assess corneal sphero-cylindrical power vectors. Differences between the more myopic (or more advanced eye for keratoconics) and the less myopic (advanced) eye were examined. Results: Over a 6 mm diameter, the cornea of the more myopic eye was significantly steeper (refractive power vector M) compared to the fellow eye in both anisometropes (0.10 ± 0.27 D steeper, p = 0.01) and keratoconics (2.54 ± 2.32 D steeper, p < 0.001) while no significant interocular difference was observed for isometropic emmetropes (-0.03 ± 0.32 D) or isometropic myopes (0.02 ± 0.30 D) (both p > 0.05). In keratoconic eyes, the between eye difference in corneal refractive power was greatest inferiorly (associated with cone location). Similarly, in myopic anisometropes, the more myopic eye displayed a central region of significant inferior corneal steepening (0.15 ± 0.42 D steeper) relative to the fellow eye (p = 0.01). Significant interocular differences in higher order aberrations were only observed in the keratoconic group for; vertical trefoil C(3,-3), horizontal coma C(3,1) secondary astigmatism along 45 C(4, -2) (p < 0.05) and vertical coma C(3,-1) (p < 0.001). The interocular difference in vertical pupil decentration (relative to the corneal vertex normal) increased with between eye asymmetry in refraction (isometropia 0.00 ± 0.09, anisometropia 0.03 ± 0.15 and keratoconus 0.08 ± 0.16 mm) as did the interocular difference in corneal vertical coma C (3,-1) (isometropia -0.006 ± 0.142, anisometropia -0.037 ± 0.195 and keratoconus -1.243 ± 0.936 μm) but only reached statistical significance for pair-wise comparisons between the isometropic and keratoconic groups. Conclusions: There is a high degree of corneal symmetry between the fellow eyes of myopic and emmetropic isometropes. Interocular differences in corneal topography and higher order aberrations are more apparent in myopic anisometropes and keratoconics due to regional (primarily inferior) differences in topography and between eye differences in vertical pupil decentration relative to the corneal vertex normal. Interocular asymmetries in corneal optics appear to be associated with anisometropic refractive development.