285 resultados para yield value
em Queensland University of Technology - ePrints Archive
Resumo:
The appealing concept of optimal harvesting is often used in fisheries to obtain new management strategies. However, optimality depends on the objective function, which often varies, reflecting the interests of different groups of people. The aim of maximum sustainable yield is to extract the greatest amount of food from replenishable resources in a sustainable way. Maximum sustainable yield may not be desirable from an economic point of view. Maximum economic yield that maximizes the profit of fishing fleets (harvesting sector) but ignores socio-economic benefits such as employment and other positive externalities. It may be more appropriate to use the maximum economic yield that which is based on the value chain of the overall fishing sector, to reflect better society's interests. How to make more efficient use of a fishery for society rather than fishing operators depends critically on the gain function parameters including multiplier effects and inclusion or exclusion of certain costs. In particular, the optimal effort level based on the overall value chain moves closer to the optimal effort for the maximum sustainable yield because of the multiplier effect. These issues are illustrated using the Australian Northern Prawn Fishery.
Resumo:
Cotton is one of the most important irrigated crops in subtropical Australia. In recent years, cotton production has been severely affected by the worst drought in recorded history, with the 2007–08 growing season recording the lowest average cotton yield in 30 years. The use of a crop simulation model to simulate the long-term temporal distribution of cotton yields under different levels of irrigation and the marginal value for each unit of water applied is important in determining the economic feasibility of current irrigation practices. The objectives of this study were to: (i) evaluate the CROPGRO-Cotton simulation model for studying crop growth under deficit irrigation scenarios across ten locations in New South Wales (NSW) and Queensland (Qld); (ii) evaluate agronomic and economic responses to water inputs across the ten locations; and (iii) determine the economically optimal irrigation level. The CROPGRO-Cotton simulation model was evaluated using 2 years of experimental data collected at Kingsthorpe, Qld. The model was further evaluated using data from nine locations between northern NSW and southern Qld. Long-term simulations were based on the prevalent furrowirrigation practice of refilling the soil profile when the plant -available soil water content is<50%. The model closely estimated lint yield for all locations evaluated. Our results showed that the amounts of water needed to maximise profit and maximise yield are different, which has economic and environmental implications. Irrigation needed to maximise profits varied with both agronomic and economic factors, which can be quite variable with season and location. Therefore, better tools and information that consider the agronomic and economic implications of irrigation decisions need to be developed and made available to growers.
Resumo:
Use of appropriate nursery environments will maximize gain from selection for yield of wheat (Triticum aestivum L.) in the target population of environments of a breeding program. The objective of this study was to investigate how well-irrigated (low-stress) nursery environments predict yield of lines in target environments that varied in degree of water limitation. Fifteen lines were sampled from the preliminary yield evaluation stage of the Queensland wheat breeding program and tested in 26 trials under on-farm conditions (Target Environments) across nine years (1985 to 1993) and also in 27 trials conducted at three research stations (Nursery Environments) in three years (1987 to 1989). The nursery environments were structured to impose different levels of water and nitrogen (N) limitation, whereas the target environments represented a random sample of on-farm conditions from the target population of environments. Indirect selection and pattern analysis methods were used to investigate selection for yield in the nursery environments and gain from selection in the target environments. Yield under low-stress nursery conditions was an effective predictor of yield under similar low-stress target environments (r = 0.89, P < 0.01). However, the value of the low-stress nursery as a predictor of yield in the water-limited target environments decreased with increasing water stress (moderate stress r = 0.53, P < 0.05, to r = 0.38, P > 0.05; severe stress r = -0.08, P > 0.05). Yield in the stress nurseries was a poor predictor of yield in the target environments. Until there is a clear understanding of the physiological-genetic basis of variation for adaptation of wheat to the water-limited environments in Queensland, yield improvement can best be achieved by selection for a combination of yield potential in an irrigated low-stress nursery and yield in on-farm trials that sample the range of water-limited environments of the target population of environments.