154 resultados para wind tunnel

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The carousel wind tunnel (CWT) can be a significant tool for the determination of the nature and magnitude of interparticlar forces at threshold of motion. By altering particle and drum surface electrical properties and/or by applying electric potential difference across the inner and outer drums, it should be possible to separate electrostatic effects from other forces of cohesion. Besides particle trajectory and bedform analyses, suggestions for research include particle aggregation in zero and sub-gravity environments, effect of suspension-saltation ratio on soil abrasion, and the effects of shear and shear free turbulence on particle aggregation as applied to evolution of solar nebula.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Buffeting response of a cable-stayed bridge under construction is investigated through wind tunnel tests and numerical simulations. Two configurations of the erection stage have been considered and compared in terms of dynamic response and internal forces using the results of the experimental aeroelastic models. Moreover the results of a numerical model able to simulate the simultaneous effects of vortex shedding from tower and aeroelastic response of the deck are compared to the wind tunnel ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Field and laboratory measurements identified a complex relationship between odour emission rates provided by the US EPA dynamic emission chamber and the University of New South Wales wind tunnel. Using a range of model compounds in an aqueous odour source, we demonstrate that emission rates derived from the wind tunnel and flux chamber are a function of the solubility of the materials being emitted, the concentrations of the materials within the liquid; and the aerodynamic conditions within the device – either velocity in the wind tunnel, or flushing rate for the flux chamber. The ratio of wind tunnel to flux chamber odour emission rates (OU m-2 s) ranged from about 60:1 to 112:1. The emission rates of the model odorants varied from about 40:1 to over 600:1. These results may provide, for the first time, a basis for the development of a model allowing an odour emission rate derived from either device to be used for odour dispersion modelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The literature identifies several models that describe inter-phase mass transfer, key to the emission process. While the emission process is complex and these models may be more or less successful at predicting mass transfer rates, they identify three key variables for a system involving a liquid and an air phase in contact with it: • A concentration (or partial pressure) gradient driving force; • The fluid dynamic characteristics within the liquid and air phases, and • The chemical properties of the individual components within the system. In three applied research projects conducted prior to this study, samples collected with two well-known sampling devices resulted in very different odour emission rates. It was not possible to adequately explain the differences observed. It appeared likely, however, that the sample collection device might have artefact effects on the emission of odorants, i.e. the sampling device appeared to have altered the mass transfer process. This raised the obvious question: Where two different emission rates are reported for a single source (differing only in the selection of sampling device), and a credible explanation for the difference in emission rate cannot be provided, which emission rate is correct? This research project aimed to identify the factors that determine odour emission rates, the impact that the characteristics of a sampling device may exert on the key mass transfer variables, and ultimately, the impact of the sampling device on the emission rate itself. To meet these objectives, a series of targeted reviews, and laboratory and field investigations, were conducted. Two widely-used, representative devices were chosen to investigate the influence of various parameters on the emission process. These investigations provided insight into the odour emission process generally, and the influence of the sampling device specifically.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are large uncertainties in the aerothermodynamic modelling of super-orbital re-entry which impact the design of spacecraft thermal protection systems (TPS). Aspects of the thermal environment of super-orbital re-entry flows can be simulated in the laboratory using arc- and plasma jet facilities and these devices are regularly used for TPS certification work [5]. Another laboratory device which is capable of simulating certain critical features of both the aero and thermal environment of super-orbital re-entry is the expansion tube, and three such facilities have been operating at the University of Queensland in recent years[10]. Despite some success, wind tunnel tests do not achieve full simulation, however, a virtually complete physical simulation of particular re-entry conditions can be obtained from dedicated flight testing, and the Apollo era FIRE II flight experiment [2] is the premier example which still forms an important benchmark for modern simulations. Dedicated super-orbital flight testing is generally considered too expensive today, and there is a reluctance to incorporate substantial instrumentation for aerothermal diagnostics into existing missions since it may compromise primary mission objectives. An alternative approach to on-board flight measurements, with demonstrated success particularly in the ‘Stardust’ sample return mission, is remote observation of spectral emissions from the capsule and shock layer [8]. JAXA’s ‘Hayabusa’ sample return capsule provides a recent super-orbital reentry example through which we illustrate contributions in three areas: (1) physical simulation of super-orbital re-entry conditions in the laboratory; (2) computational simulation of such flows; and (3) remote acquisition of optical emissions from a super-orbital re entry event.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the hardware development and testing of a new concept for air sampling via the integration of a prototype spore trap onboard an unmanned aerial system (UAS).We propose the integration of a prototype spore trap onboard a UAS to allow multiple capture of spores of pathogens in single remote locations at high or low altitude, otherwise not possible with stationary sampling devices.We also demonstrate the capability of this system for the capture of multiple time-stamped samples during a single mission.Wind tunnel testing was followed by simulation, and flight testing was conducted to measure and quantify the spread during simulated airborne air sampling operations. During autonomous operations, the onboard autopilot commands the servo to rotate the sampling device to a new indexed location once the UAS vehicle reaches the predefined waypoint or set of waypoints (which represents the region of interest). Time-stamped UAS data are continuously logged during the flight to assist with analysis of the particles collected. Testing and validation of the autopilot and spore trap integration, functionality, and performance is described. These tools may enhance the ability to detect new incursions of spores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The success or effectiveness for any aircraft design is a function of many trade-offs. Over the last 100 years of aircraft design these trade-offs have been optimized and dominant aircraft design philosophies have emerged. Pilotless aircraft (or uninhabited airborne systems, UAS) present new challenges in the optimization of their configuration. Recent developments in battery and motor technology have seen an upsurge in the utility and performance of electric powered aircraft. Thus, the opportunity to explore hybrid-electric aircraft powerplant configurations is compelling. This thesis considers the design of such a configuration from an overall propulsive, and energy efficiency perspective. A prototype system was constructed using a representative small UAS internal combustion engine (10cc methanol two-stroke) and a 600W brushless Direct current (BLDC) motor. These components were chosen to be representative of those that would be found on typical small UAS. The system was tested on a dynamometer in a wind-tunnel and the results show an improvement in overall propulsive efficiency of 17% when compared to a non-hybrid powerplant. In this case, the improvement results from the utilization of a larger propeller that the hybrid solution allows, which shows that general efficiency improvements are possible using hybrid configurations for aircraft propulsion. Additionally this approach provides new improvements in operational and mission flexibility (such as the provision of self-starting) which are outlined in the thesis. Specifically, the opportunity to use the windmilling propeller for energy regeneration was explored. It was found (in the prototype configuration) that significant power (60W) is recoverable in a steep dive, and although the efficiency of regeneration is low, the capability can allow several options for improved mission viability. The thesis concludes with the general statement that a hybrid powerplant improves the overall mission effectiveness and propulsive efficiency of small UAS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the development of an analytical model used to simulate the fatigue behaviour of roof cladding during the passage of a tropical cyclone. The model incorporated into a computer program uses wind pressure data from wind tunnel tests in combination with time history information on wind speed and direction during a tropical cyclone, and experimental fatigue characteristics data of roof claddings. The wind pressure data is analysed using a rainflow form of analysis, and a fatigue damage index calculated using a modified form of Miner's rule. Some of the results obtained to date and their significance in relation to the review of current fatigue tests are presented. The model appears to be reasonable for comparative estimation of fatigue life, but an improvement of Miner's rule is required for the prediction of actual fatigue life.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently two different fatigue tests are being used to investigate the fatigue susceptibility of roof claddings in the cyclone prone areas of Australia. In order to resolve this issue a detailed investigation was conducted to study the nature of cyclonic wind forces using wind tunnel testing and computer modelling and the fatigue behaviour of metal roof claddings using structural testing. This led to the development of an accurate, but complicated loading matrix for a design cyclone. Based on this matrix, a simplified low-high-low loading sequence has been developed for the testing of roofing systems in cyclone prone areas. This paper first reviews the currently used fatigue loading sequences, then presents details of the cyclonic wind loading matrix and finally the development of the new simplified loading sequence. This simplified sequence should become the only suitable test for most of the cyclone prone areas of Australia covered by Region C which suffers from Category 4 cyclones. For Region D which suffers from Category 5 cyclones, the same loading sequence with 20% increased cycles has been recommended. An experimental programme to validate the new simplified loading sequence has been proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A non-translating, long duration thunderstorm downburst has been simulated experimentally and numerically by modelling a spatially stationary steady flow impinging air jet. Velocity profiles were shown to compare well with an upper-bound of velocity measurements reported for full-scale microbursts. Velocity speed-up over a range of topographic features in simulated downburst flow was also tested with comparisons made to previous work in a similar flow, and also boundary layer wind tunnel experiments. It was found that the amplification measured above the crest of topographic features in simulated downburst flow was up to 35% less than that observed in boundary layer flow for all shapes tested. From the computational standpoint we conclude that the Shear Stress Transport (SST) model performs the best from amongst a range of eddy-viscosity and second moment closures tested for modelling the impinging jet flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The wind loading on most structural elements is made up of both an external and internal pressure. Internal pressures are also important for the design of naturally ventilated buildings. The internal pressure is the interaction between the external pressure propagating through the building envelope and any internal plant causing building pressurization. Although the external pressure field can be well defined through a series of wind tunnel tests, modeling complexities makes accurate prediction of the internal pressure difficult. For commercial testing for the determination of design cladding pressures, an internal pressure coefficient is generally assumed from wind loading standards. Several theories regarding the propagation of internal pressures through single and multiple dominant openings have been proposed for small and large flexible buildings (Harris (1990), Holmes, (1979), Liu & Saathoff (1981 ), Vickery (1986, 1994), Vickery & Bloxham (1992), Vickery & Georgiou (1991))...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurements of particle concentrations and distributions in terms of number, surface area, and mass were performed simultaneously at eight sampling points within a symmetric street canyon of an Italian city. The aim was to obtain a useful benchmark for validation of wind tunnel experiments and numerical schemes: to this purpose, the influence of wind directions and speeds was considered. Particle number concentrations (PNCs) were higher on the leeward side than the windward side of the street canyon due to the wind vortex effect. Different vertical PNC profiles were observed between the two canyon sides depending on the wind direction and speed at roof level. A decrease in particle concentrations was observed with increasing rooftop wind speed, except for the coarse fraction indicating a possible particle resuspension due to the traffic and wind motion. This study confirms that particle concentration fields in urban street canyons are strongly influenced by traffic emissions and meteorological parameters, especially wind direction and speed.