247 resultados para unstable ice flow
em Queensland University of Technology - ePrints Archive
Resumo:
We perform an analytic and numerical study of an inviscid contracting bubble in a two-dimensional Hele-Shaw cell, where the effects of both surface tension and kinetic undercooling on the moving bubble boundary are not neglected. In contrast to expanding bubbles, in which both boundary effects regularise the ill-posedness arising from the viscous (Saffman-Taylor) instability, we show that in contracting bubbles the two boundary effects are in competition, with surface tension stabilising the boundary, and kinetic undercooling destabilising it. This competition leads to interesting bifurcation behaviour in the asymptotic shape of the bubble in the limit it approaches extinction. In this limit, the boundary may tend to become either circular, or approach a line or "slit" of zero thickness, depending on the initial condition and the value of a nondimensional surface tension parameter. We show that over a critical range of surface tension values, both these asymptotic shapes are stable. In this regime there exists a third, unstable branch of limiting self-similar bubble shapes, with an asymptotic aspect ratio (dependent on the surface tension) between zero and one. We support our asymptotic analysis with a numerical scheme that utilises the applicability of complex variable theory to Hele-Shaw flow.
Resumo:
We examine the effect of a kinetic undercooling condition on the evolution of a free boundary in Hele--Shaw flow, in both bubble and channel geometries. We present analytical and numerical evidence that the bubble boundary is unstable and may develop one or more corners in finite time, for both expansion and contraction cases. This loss of regularity is interesting because it occurs regardless of whether the less viscous fluid is displacing the more viscous fluid, or vice versa. We show that small contracting bubbles are described to leading order by a well-studied geometric flow rule. Exact solutions to this asymptotic problem continue past the corner formation until the bubble contracts to a point as a slit in the limit. Lastly, we consider the evolving boundary with kinetic undercooling in a Saffman--Taylor channel geometry. The boundary may either form corners in finite time, or evolve to a single long finger travelling at constant speed, depending on the strength of kinetic undercooling. We demonstrate these two different behaviours numerically. For the travelling finger, we present results of a numerical solution method similar to that used to demonstrate the selection of discrete fingers by surface tension. With kinetic undercooling, a continuum of corner-free travelling fingers exists for any finger width above a critical value, which goes to zero as the kinetic undercooling vanishes. We have not been able to compute the discrete family of analytic solutions, predicted by previous asymptotic analysis, because the numerical scheme cannot distinguish between solutions characterised by analytic fingers and those which are corner-free but non-analytic.
Resumo:
Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.
Resumo:
-
Resumo:
The high degree of variability and inconsistency in cash flow study usage by property professionals demands improvement in knowledge and processes. Until recently limited research was being undertaken on the use of cash flow studies in property valuations but the growing acceptance of this approach for major investment valuations has resulted in renewed interest in this topic. Studies on valuation variations identify data accuracy, model consistency and bias as major concerns. In cash flow studies there are practical problems with the input data and the consistency of the models. This study will refer to the recent literature and identify the major factors in model inconsistency and data selection. A detailed case study will be used to examine the effects of changes in structure and inputs. The key variable inputs will be identified and proposals developed to improve the selection process for these key variables. The variables will be selected with the aid of sensitivity studies and alternative ways of quantifying the key variables explained. The paper recommends, with reservations, the use of probability profiles of the variables and the incorporation of this data in simulation exercises. The use of Monte Carlo simulation is demonstrated and the factors influencing the structure of the probability distributions of the key variables are outline. This study relates to ongoing research into functional performance of commercial property within an Australian Cooperative Research Centre.