703 resultados para turf visual quality
em Queensland University of Technology - ePrints Archive
Resumo:
This work aims to contribute to the reliability and integrity of perceptual systems of unmanned ground vehicles (UGV). A method is proposed to evaluate the quality of sensor data prior to its use in a perception system by utilising a quality metric applied to heterogeneous sensor data such as visual and infrared camera images. The concept is illustrated specifically with sensor data that is evaluated prior to the use of the data in a standard SIFT feature extraction and matching technique. The method is then evaluated using various experimental data sets that were collected from a UGV in challenging environmental conditions, represented by the presence of airborne dust and smoke. In the first series of experiments, a motionless vehicle is observing a ’reference’ scene, then the method is extended to the case of a moving vehicle by compensating for its motion. This paper shows that it is possible to anticipate degradation of a perception algorithm by evaluating the input data prior to any actual execution of the algorithm.
Resumo:
The international focus on embracing daylighting for energy efficient lighting purposes and the corporate sector’s indulgence in the perception of workplace and work practice “transparency” has spurned an increase in highly glazed commercial buildings. This in turn has renewed issues of visual comfort and daylight-derived glare for occupants. In order to ascertain evidence, or predict risk, of these events; appraisals of these complex visual environments require detailed information on the luminances present in an occupant’s field of view. Conventional luminance meters are an expensive and time consuming method of achieving these results. To create a luminance map of an occupant’s visual field using such a meter requires too many individual measurements to be a practical measurement technique. The application of digital cameras as luminance measurement devices has solved this problem. With high dynamic range imaging, a single digital image can be created to provide luminances on a pixel-by-pixel level within the broad field of view afforded by a fish-eye lens: virtually replicating an occupant’s visual field and providing rapid yet detailed luminance information for the entire scene. With proper calibration, relatively inexpensive digital cameras can be successfully applied to the task of luminance measurements, placing them in the realm of tools that any lighting professional should own. This paper discusses how a digital camera can become a luminance measurement device and then presents an analysis of results obtained from post occupancy measurements from building assessments conducted by the Mobile Architecture Built Environment Laboratory (MABEL) project. This discussion leads to the important realisation that the placement of such tools in the hands of lighting professionals internationally will provide new opportunities for the lighting community in terms of research on critical issues in lighting such as daylight glare and visual quality and comfort.
Resumo:
High luminance contrast between windows and surrounding surfaces could cause discomfort glare, which could reduce office workers’ productivity. It might also increase energy usage of buildings due to occupants’ interventions in lighting conditions to improve indoor visual quality. It is presumed that increasing the luminance of the areas surrounding the windows using a supplementary system, such Light Emitting Diodes (LEDs), could reduce discomfort glare. This paper reports on the results of a pilot study in a conventional office in Brisbane, Australia. The outcomes of this study indicated that a supplementary LED system could reduce the luminance contrast on the window wall from values in the order of 24:1 to 12:1. The results suggest that this reduction could significantly reduce discomfort glare from windows, as well as diminishing the likelihood of users’ intention to turn on the ceiling lights and/ or to move the blind down.
Resumo:
This paper proposes an experimental study of quality metrics that can be applied to visual and infrared images acquired from cameras onboard an unmanned ground vehicle (UGV). The relevance of existing metrics in this context is discussed and a novel metric is introduced. Selected metrics are evaluated on data collected by a UGV in clear and challenging environmental conditions, represented in this paper by the presence of airborne dust or smoke. An example of application is given with monocular SLAM estimating the pose of the UGV while smoke is present in the environment. It is shown that the proposed novel quality metric can be used to anticipate situations where the quality of the pose estimate will be significantly degraded due to the input image data. This leads to decisions of advantageously switching between data sources (e.g. using infrared images instead of visual images).
Resumo:
This paper proposes an experimental study of quality metrics that can be applied to visual and infrared images acquired from cameras onboard an unmanned ground vehicle (UGV). The relevance of existing metrics in this context is discussed and a novel metric is introduced. Selected metrics are evaluated on data collected by a UGV in clear and challenging environmental conditions, represented in this paper by the presence of airborne dust or smoke.
Resumo:
Purpose – The purpose of this paper is to determine consumer perceptions of service quality in wet markets and supermarkets in Hong Kong. Design/methodology/approach – A questionnaire was developed and distributed via a convenience sample to consumers in shopping malls in Causeway Bay, Mong Kok and Tsuen Wan. Findings – The study finds that supermarkets outperformed wet markets across all aspects of service quality as measured by SERVQUAL-P. Research limitations/implications – Implications suggest that wet market vendors are not providing the level of service quality demanded by their customers. In particular, findings suggest that wet market vendors need to improve the visual attractiveness of their stalls, work on making them look more professional and start using more modern equipment. Practical implications – Wet market vendors in conjunction with government representatives need to develop standards of service quality for wet markets across Hong Kong. This is imperative if the wet market model is to survive in what is a highly competitive food retailing industry. Without action, it appears that the supermarketization of the Hong Kong food retailing industry will continue unabated. Originality/value – This paper adds to a small but growing research stream examining service quality in the food retailing industry in Hong Kong. It provides empirical results that guide suggested actions for change.
Resumo:
One of the major challenges facing a present day game development company is the removal of bugs from such complex virtual environments. This work presents an approach for measuring the correctness of synthetic scenes generated by a rendering system of a 3D application, such as a computer game. Our approach builds a database of labelled point clouds representing the spatiotemporal colour distribution for the objects present in a sequence of bug-free frames. This is done by converting the position that the pixels take over time into the 3D equivalent points with associated colours. Once the space of labelled points is built, each new image produced from the same game by any rendering system can be analysed by measuring its visual inconsistency in terms of distance from the database. Objects within the scene can be relocated (manually or by the application engine); yet the algorithm is able to perform the image analysis in terms of the 3D structure and colour distribution of samples on the surface of the object. We applied our framework to the publicly available game RacingGame developed for Microsoft(R) Xna(R). Preliminary results show how this approach can be used to detect a variety of visual artifacts generated by the rendering system in a professional quality game engine.
Resumo:
Visual localization systems that are practical for autonomous vehicles in outdoor industrial applications must perform reliably in a wide range of conditions. Changing outdoor conditions cause difficulty by drastically altering the information available in the camera images. To confront the problem, we have developed a visual localization system that uses a surveyed three-dimensional (3D)-edge map of permanent structures in the environment. The map has the invariant properties necessary to achieve long-term robust operation. Previous 3D-edge map localization systems usually maintain a single pose hypothesis, making it difficult to initialize without an accurate prior pose estimate and also making them susceptible to misalignment with unmapped edges detected in the camera image. A multihypothesis particle filter is employed here to perform the initialization procedure with significant uncertainty in the vehicle's initial pose. A novel observation function for the particle filter is developed and evaluated against two existing functions. The new function is shown to further improve the abilities of the particle filter to converge given a very coarse estimate of the vehicle's initial pose. An intelligent exposure control algorithm is also developed that improves the quality of the pertinent information in the image. Results gathered over an entire sunny day and also during rainy weather illustrate that the localization system can operate in a wide range of outdoor conditions. The conclusion is that an invariant map, a robust multihypothesis localization algorithm, and an intelligent exposure control algorithm all combine to enable reliable visual localization through challenging outdoor conditions.
Resumo:
This paper presents a vision-based method of vehicle localisation that has been developed and tested on a large forklift type robotic vehicle which operates in a mainly outdoor industrial setting. The localiser uses a sparse 3D edgemap of the environment and a particle filter to estimate the pose of the vehicle. The vehicle operates in dynamic and non-uniform outdoor lighting conditions, an issue that is addressed by using knowledge of the scene to intelligently adjust the camera exposure and hence improve the quality of the information in the image. Results from the industrial vehicle are shown and compared to another laser-based localiser which acts as a ground truth. An improved likelihood metric, using peredge calculation, is presented and has shown to be 40% more accurate in estimating rotation. Visual localization results from the vehicle driving an arbitrary 1.5km path during a bright sunny period show an average position error of 0.44m and rotation error of 0.62deg.
Resumo:
Background: The two-stage Total Laparoscopic Hysterectomy (TLH) versus Total Abdominal Hysterectomy (TAH) for stage I endometrial cancer (LACE) randomised controlled trial was initiated in 2005. The primary objective of stage 1 was to assess whether TLH results in equivalent or improved QoL up to 6 months after surgery compared to TAH. The primary objective of stage 2 was to test the hypothesis that disease-free survival at 4.5 years is equivalent for TLH and TAH. Results addressing the primary objective of stage 1 of the LACE trial are presented here. Methods: The first 361 LACE participants (TAH n= 142, TLH n=190) were enrolled in the QoL substudy at 19 centres across Australia, New Zealand and Hong Kong, and 332 completed the QoL analysis. Randomisation was performed centrally and independently from other study procedures via a computer generated, web-based system (providing concealment of the next assigned treatment) using stratified permuted blocks of 3 and 6, and assigned patients with histologically confirmed stage 1 endometrioid endometrial adenocarcinoma and ECOG performance status <2 to TLH or TAH stratified by histological grade and study centre. No blinding of patients or study personnel was attempted. QoL was measured at baseline, 1 and 4 weeks (early), and 3 and 6 months (late) after surgery using the Functional Assessment of Cancer Therapy-General (FACT-G) questionnaire. The primary endpoint was the difference between the groups in QoL change from baseline at early and late time points (a 5% difference was considered clinically significant). Analysis was performed according to the intention-to-treat principle using generalized estimating equations on differences from baseline for the early and late QoL recovery. The LACE trial is registered with clinicaltrials.gov (NCT00096408) and the Australian New Zealand Clinical Trials Registry (CTRN12606000261516). Patients for both stages of the trial have now been recruited and are being followed up for disease-specific outcomes. Findings: The proportion of missing values at the 5%, 10% 15% and 20% differences in the FACT-G scale was 6% (12/190) in the TLH and 14% (20/142) in the TAH group. There were 8/332 conversions (2.4%, 7 of which were from TLH to TAH). In the early phase of recovery, patients undergoing TLH reported significantly greater improvement of QoL from baseline compared to TAH in all subscales except the emotional and social well-being subscales. Improvements in QoL up to 6 months post-surgery continued to favour TLH except for the emotional and social well-being of the FACT and the visual analogue scale of the EuroQoL five dimensions (EuroQoL-VAS). Length of operating time was significantly longer in the TLH group (138±43 mins), than in the TAH group at (109±34 mins; p=0.001). While the proportion of intraoperative adverse events was similar between the treatment groups (TAH 8/142, 5.6%; TLH 14/190, 7.4%; p=0.55), postoperatively, twice as many patients in the TAH group experienced adverse events of CTC grade 3+ than in the TLH group (33/142, 23.2% and 22/190, 11.6%, respectively; p=0.004). Postoperative serious adverse events occurred more frequently in patients who had a TAH (27/142, 19.0%) than a TLH (15/190, 7.9%) (p=0.002). Interpretation: QoL improvements from baseline during early and later phases of recovery, and the adverse event profile significantly favour TLH compared to TAH for patients treated for Stage I endometrial cancer.
Resumo:
Background: Assessments of change in subjective patient reported outcomes such as health-related quality of life (HRQoL) are a key component of many clinical and research evaluations. However, conventional longitudinal evaluation of change may not agree with patient perceived change if patients' understanding of the subjective construct under evaluation changes over time (response shift) or if patients' have inaccurate recollection (recall bias). This study examined whether older adults' perception of change is in agreement with conventional longitudinal evaluation of change in their HRQoL over the duration of their hospital stay. It also investigated this level of agreement after adjusting patient perceived change for recall bias that patients may have experienced. Methods: A prospective longitudinal cohort design nested within a larger randomised controlled trial was implemented. 103 hospitalised older adults participated in this investigation at a tertiary hospital facility. The EQ-5D utility and Visual Analogue Scale (VAS) scores were used to evaluate HRQoL. Participants completed EQ-5D reports as soon as they were medically stable (within three days of admission) then again immediately prior to discharge. Three methods of change score calculation were used (conventional change, patient perceived change and patient perceived change adjusted for recall bias). Agreement was primarily investigated using intraclass correlation coefficients (ICC) and limits of agreement. Results: Overall 101 (98%) participants completed both admission and discharge assessments. The mean (SD) age was 73.3 (11.2). The median (IQR) length of stay was 38 (20-60) days. For agreement between conventional longitudinal change and patient perceived change: ICCs were 0.34 and 0.40 for EQ-5D utility and VAS respectively. For agreement between conventional longitudinal change and patient perceived change adjusted for recall bias: ICCs were 0.98 and 0.90 respectively. Discrepancy between conventional longitudinal change and patient perceived change was considered clinically meaningful for 84 (83.2%) of participants, after adjusting for recall bias this reduced to 8 (7.9%). Conclusions: Agreement between conventional change and patient perceived change was not strong. A large proportion of this disagreement could be attributed to recall bias. To overcome the invalidating effect of response shift (on conventional change) and recall bias (on patient perceived change) a method of adjusting patient perceived change for recall bias has been described.
Resumo:
Objective: To identify agreement levels between conventional longitudinal evaluation of change (post–pre) and patient-perceived change (post–then test) in health-related quality of life. Design: A prospective cohort investigation with two assessment points (baseline and six-month follow-up) was implemented. Setting: Community rehabilitation setting. Subjects: Frail older adults accessing community-based rehabilitation services. Intervention: Nil as part of this investigation. Main measures: Conventional longitudinal change in health-related quality of life was considered the difference between standard EQ-5D assessments completed at baseline and follow-up. To evaluate patient-perceived change a ‘then test’ was also completed at the follow-up assessment. This required participants to report (from their current perspective) how they believe their health-related quality of life was at baseline (using the EQ-5D). Patient-perceived change was considered the difference between ‘then test’ and standard follow-up EQ-5D assessments. Results: The mean (SD) age of participants was 78.8 (7.3). Of the 70 participants 62 (89%) of data sets were complete and included in analysis. Agreement between conventional (post–pre) and patient-perceived (post–then test) change was low to moderate (EQ-5D utility intraclass correlation coefficient (ICC)¼0.41, EQ-5D visual analogue scale (VAS) ICC¼0.21). Neither approach inferred greater change than the other (utility P¼0.925, VAS P¼0.506). Mean (95% confidence interval (CI)) conventional change in EQ-5D utility and VAS were 0.140 (0.045,0.236) and 8.8 (3.3,14.3) respectively, while patient-perceived change was 0.147 (0.055,0.238) and 6.4 (1.7,11.1) respectively. Conclusions: Substantial disagreement exists between conventional longitudinal evaluation of change in health-related quality of life and patient-perceived change in health-related quality of life (as measured using a then test) within individuals.