241 resultados para trypsin-like serine protease
em Queensland University of Technology - ePrints Archive
Resumo:
Proteases regulate a spectrum of diverse physiological processes, and dysregulation of proteolytic activity drives a plethora of pathological conditions. Understanding protease function is essential to appreciating many aspects of normal physiology and progression of disease. Consequently, development of potent and specific inhibitors of proteolytic enzymes is vital to provide tools for the dissection of protease function in biological systems and for the treatment of diseases linked to aberrant proteolytic activity. The studies in this thesis describe the rational design of potent inhibitors of three proteases that are implicated in disease development. Additionally, key features of the interaction of proteases and their cognate inhibitors or substrates are analysed and a series of rational inhibitor design principles are expounded and tested. Rational design of protease inhibitors relies on a comprehensive understanding of protease structure and biochemistry. Analysis of known protease cleavage sites in proteins and peptides is a commonly used source of such information. However, model peptide substrate and protein sequences have widely differing levels of backbone constraint and hence can adopt highly divergent structures when binding to a protease’s active site. This may result in identical sequences in peptides and proteins having different conformations and diverse spatial distribution of amino acid functionalities. Regardless of this, protein and peptide cleavage sites are often regarded as being equivalent. One of the key findings in the following studies is a definitive demonstration of the lack of equivalence between these two classes of substrate and invalidation of the common practice of using the sequences of model peptide substrates to predict cleavage of proteins in vivo. Another important feature for protease substrate recognition is subsite cooperativity. This type of cooperativity is commonly referred to as protease or substrate binding subsite cooperativity and is distinct from allosteric cooperativity, where binding of a molecule distant from the protease active site affects the binding affinity of a substrate. Subsite cooperativity may be intramolecular where neighbouring residues in substrates are interacting, affecting the scissile bond’s susceptibility to protease cleavage. Subsite cooperativity can also be intermolecular where a particular residue’s contribution to binding affinity changes depending on the identity of neighbouring amino acids. Although numerous studies have identified subsite cooperativity effects, these findings are frequently ignored in investigations probing subsite selectivity by screening against diverse combinatorial libraries of peptides (positional scanning synthetic combinatorial library; PS-SCL). This strategy for determining cleavage specificity relies on the averaged rates of hydrolysis for an uncharacterised ensemble of peptide sequences, as opposed to the defined rate of hydrolysis of a known specific substrate. Further, since PS-SCL screens probe the preference of the various protease subsites independently, this method is inherently unable to detect subsite cooperativity. However, mean hydrolysis rates from PS-SCL screens are often interpreted as being comparable to those produced by single peptide cleavages. Before this study no large systematic evaluation had been made to determine the level of correlation between protease selectivity as predicted by screening against a library of combinatorial peptides and cleavage of individual peptides. This subject is specifically explored in the studies described here. In order to establish whether PS-SCL screens could accurately determine the substrate preferences of proteases, a systematic comparison of data from PS-SCLs with libraries containing individually synthesised peptides (sparse matrix library; SML) was carried out. These SML libraries were designed to include all possible sequence combinations of the residues that were suggested to be preferred by a protease using the PS-SCL method. SML screening against the three serine proteases kallikrein 4 (KLK4), kallikrein 14 (KLK14) and plasmin revealed highly preferred peptide substrates that could not have been deduced by PS-SCL screening alone. Comparing protease subsite preference profiles from screens of the two types of peptide libraries showed that the most preferred substrates were not detected by PS SCL screening as a consequence of intermolecular cooperativity being negated by the very nature of PS SCL screening. Sequences that are highly favoured as result of intermolecular cooperativity achieve optimal protease subsite occupancy, and thereby interact with very specific determinants of the protease. Identifying these substrate sequences is important since they may be used to produce potent and selective inhibitors of protolytic enzymes. This study found that highly favoured substrate sequences that relied on intermolecular cooperativity allowed for the production of potent inhibitors of KLK4, KLK14 and plasmin. Peptide aldehydes based on preferred plasmin sequences produced high affinity transition state analogue inhibitors for this protease. The most potent of these maintained specificity over plasma kallikrein (known to have a very similar substrate preference to plasmin). Furthermore, the efficiency of this inhibitor in blocking fibrinolysis in vitro was comparable to aprotinin, which previously saw clinical use to reduce perioperative bleeding. One substrate sequence particularly favoured by KLK4 was substituted into the 14 amino acid, circular sunflower trypsin inhibitor (SFTI). This resulted in a highly potent and selective inhibitor (SFTI-FCQR) which attenuated protease activated receptor signalling by KLK4 in vitro. Moreover, SFTI-FCQR and paclitaxel synergistically reduced growth of ovarian cancer cells in vitro, making this inhibitor a lead compound for further therapeutic development. Similar incorporation of a preferred KLK14 amino acid sequence into the SFTI scaffold produced a potent inhibitor for this protease. However, the conformationally constrained SFTI backbone enforced a different intramolecular cooperativity, which masked a KLK14 specific determinant. As a consequence, the level of selectivity achievable was lower than that found for the KLK4 inhibitor. Standard mechanism inhibitors such as SFTI rely on a stable acyl-enzyme intermediate for high affinity binding. This is achieved by a conformationally constrained canonical binding loop that allows for reformation of the scissile peptide bond after cleavage. Amino acid substitutions within the inhibitor to target a particular protease may compromise structural determinants that support the rigidity of the binding loop and thereby prevent the engineered inhibitor reaching its full potential. An in silico analysis was carried out to examine the potential for further improvements to the potency and selectivity of the SFTI-based KLK4 and KLK14 inhibitors. Molecular dynamics simulations suggested that the substitutions within SFTI required to target KLK4 and KLK14 had compromised the intramolecular hydrogen bond network of the inhibitor and caused a concomitant loss of binding loop stability. Furthermore in silico amino acid substitution revealed a consistent correlation between a higher frequency of formation and the number of internal hydrogen bonds of SFTI-variants and lower inhibition constants. These predictions allowed for the production of second generation inhibitors with enhanced binding affinity toward both targets and highlight the importance of considering intramolecular cooperativity effects when engineering proteins or circular peptides to target proteases. The findings from this study show that although PS-SCLs are a useful tool for high throughput screening of approximate protease preference, later refinement by SML screening is needed to reveal optimal subsite occupancy due to cooperativity in substrate recognition. This investigation has also demonstrated the importance of maintaining structural determinants of backbone constraint and conformation when engineering standard mechanism inhibitors for new targets. Combined these results show that backbone conformation and amino acid cooperativity have more prominent roles than previously appreciated in determining substrate/inhibitor specificity and binding affinity. The three key inhibitors designed during this investigation are now being developed as lead compounds for cancer chemotherapy, control of fibrinolysis and cosmeceutical applications. These compounds form the basis of a portfolio of intellectual property which will be further developed in the coming years.
Resumo:
Background Canonical serine protease inhibitors commonly bind to their targets through a rigid loop stabilised by an internal hydrogen bond network and disulfide bond(s). The smallest of these is sunflower trypsin inhibitor (SFTI-1), a potent and broad-range protease inhibitor. Recently, we re-engineered the contact β-sheet of SFTI-1 to produce a selective inhibitor of kallikrein-related peptidase 4 (KLK4), a protease associated with prostate cancer progression. However, modifications in the binding loop to achieve specificity may compromise structural rigidity and prevent re-engineered inhibitors from reaching optimal binding affinity. Methodology/Principal Findings In this study, the effect of amino acid substitutions on the internal hydrogen bonding network of SFTI were investigated using an in silico screen of inhibitor variants in complex with KLK4 or trypsin. Substitutions favouring internal hydrogen bond formation directly correlated with increased potency of inhibition in vitro. This produced a second generation inhibitor (SFTI-FCQR Asn14) which displayed both a 125-fold increased capacity to inhibit KLK4 (Ki = 0.0386±0.0060 nM) and enhanced selectivity over off-target serine proteases. Further, SFTI-FCQR Asn14 was stable in cell culture and bioavailable in mice when administered by intraperitoneal perfusion. Conclusion/Significance These findings highlight the importance of conserving structural rigidity of the binding loop in addition to optimising protease/inhibitor contacts when re-engineering canonical serine protease inhibitors.
Resumo:
Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) that is activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. Cleavage of this receptor exposes a neoepitope, termed the tethered ligand (TL), which binds intramolecularly within the receptor to stimulate signal transduction via coupled G proteins. PAR2-mediated signal transduction is also experimentally stimulated by hexapeptides (agonist peptides; APs) that are homologous to the TL sequence. Due to the irreversible nature of PAR2 proteolysis, downstream signal transduction is tightly regulated. Following activation, PAR2 is rapidly uncoupled from downstream signalling by the post-translational modifications phosphorylation and ubiquination which facilitate interactions with â- arrestin. This scaffolding protein couples PAR2 to the internalisation machinery initiating its desensitisation and trafficking through the early and late endosomes followed by receptor degradation. PAR2 is widely expressed in mammalian tissues with key roles for this receptor in cardiovascular, respiratory, nervous and musculoskeletal systems. This receptor has also been linked to pathological states with aberrant expression and signalling noted in several cancers. In prostate cancer, PAR2 signalling induces migration and proliferation of tumour derived cell lines, while elevated receptor expression has been noted in malignant tissues. Importantly, a role for this receptor has also been suggested in prostate cancer bone metastasis as coexpression of PAR2 and a proteolytic activator has been demonstrated by immunohistochemical analysis. Based on these data, the primary focus of this project has been on two aspects of PAR2 biology. The first is characterisation of cellular mechanisms that regulate PAR2 signalling and trafficking. The second aspect is the role of this receptor in prostate cancer bone metastasis. In addition, to permit these studies, it was first necessary to evaluate the specificity of the commercially available anti-PAR2 antibodies SAM11, C17, N19 and H99. The evaluation of the four commercially available antibodies was assessed using four techniques: immunoprecipitation; Western blot analysis; immunofluorescence; and flow cytometry. These approaches demonstrated that three of the antibodies efficiently detect ectopically expressed PAR2 by each of these techniques. A significant finding from this study was that N19 was the only antibody able to specifically detect N-glycosylated endogenous PAR2 by Western blot analysis. This analysis was performed on lysates from prostate cancer derived cell lines and tissue derived from wildtype and PAR2 knockout mice. Importantly, further evaluation demonstrated that this antibody also efficiently detects endogenous PAR2 at the cell surface by flow cytometry. The anti-PAR2 antibody N19 was used to explore the in vitro role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Significantly, use of the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling experiments using two approaches which showed that PAR2 stably expressed by CHO cells is palmitoylated and that palmitoylation occurs on cysteine 361. Another key finding from this study is that palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ~9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. Importantly, this study also identified that palmitoylation of this receptor within the Golgi apparatus is required for efficient agonist-induced rab11amediated trafficking of PAR2 to the cell surface. Interestingly, palmitoylation is also required for receptor desensitization, as agonist-induced â-arrestin recruitment and receptor degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. Collectively, these data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor. This project also evaluated PAR2 residues involved in ligand docking. Although the extracellular loop (ECL)2 of PAR2 is known to be required for agonist-induced signal transduction, the binding pocket for receptor agonists remains to be determined. In silico homology modelling, based on a crystal structure for the prototypical GPCR rhodopsin, and ligand docking were performed to identify PAR2 transmembrane (TM) amino acids potentially involved in agonist binding. These methods identified 12 candidate residues that were mutated to examine the binding site of the PAR2 TL, revealed by trypsin cleavage, as well as of the soluble ligands 2f-LIGRLO-NH2 and GB110, which are both structurally based on the AP SLIGRLNH2. Ligand binding was evaluated from the impact of the mutated residues on PAR2-mediated calcium mobilisation. An important finding from these experiments was that mutation of residues Y156 and Y326 significantly reduced 2f-LIGRLO-NH2 and GB110 agonist activity. L307 was also important for GB110 activity. Intriguingly, mutation of PAR2 residues did not alter trypsin-induced signalling to the same extent as for the soluble agonists. The reason for this difference remains to be further examined by in silico and in vitro experimentation and, potentially, crystal structure studies. However, these findings identified the importance of TM domains in PAR2 ligand docking and will enhance the design of both PAR2 agonists and potentially agents to inhibit signalling (antagonists). The potential importance of PAR2 in prostate cancer bone metastasis was examined using a mouse model. In patients, prostate cancer bone metastases cause bone growth by disrupting bone homeostasis. In an attempt to mimic prostate cancer growth in bone, PAR2 responsive 22Rv1 prostate cancer cells, which form mixed osteoblastic and osteolytic lesions, were injected into the proximal aspect of mouse tibiae. A role for PAR2 was assessed by treating these mice with the recently developed PAR2 antagonist GB88. As controls, animals bearing intra-tibial tumours were also treated with vehicle (olive oil) or the prostate cancer chemotherapeutic docetaxel. The effect of these treatments on bone was examined radiographically and by micro-CT. Consistent with previous studies, 22Rv1 tumours caused osteoblastic periosteal spicule formation and concurrent osteolytic bone loss. Significantly, blockade of PAR2 signalling reduced the osteoblastic and osteolytic phenotype of 22Rv1 tumours in bone. No bone defects were detected in mice treated with docetaxel. These qualitative data will be followed in the future by quantitative micro-CT analysis as well as histology and histomorphometry analysis of already collected tissues. Nonetheless, these preliminary experiments highlight a potential role for PAR2 in prostate cancer growth in bone. In summary, in vitro studies have defined mechanisms regulating PAR2 activation, downstream signalling and trafficking and in vivo studies point to a potential role for this receptor in prostate cancer bone metastasis. The outcomes of this project are that a greater understanding of the biology of PAR2 may lead to the development of strategies to modulate the function of this receptor in disease.
Resumo:
Serine proteinase inhibitors play important and diverse roles in biological processes such as coagulation, defense mechanisms, and immune responses. Here, we identified and characterized a Kunitz-type proteinase inhibitor, designated FcKuSPI, of the BPTI/Kunitz family of serine proteinase inhibitors from the hemocyte cDNA library of the shrimp Fenneropenaeus chinensis. The deduced amino acid sequence of FcKuSPI comprises 80 residues with a putative signal peptide of 15 amino acids. The predicted molecular weight of the mature peptide is 7.66 kDa and its predicted isoelectric point is 8.84. FcKuSPI includes a Kunitz domain containing six conserved cysteine residues that are predicted to form three disulfide bonds. FcKuSPI shares 44e53% homology with BPTI/Kunitz family members from other species. FcKuSPI mRNAwas expressed highly in the hemocytes and moderately in muscle in healthy shrimp. Recombinant FcKuSPI protein demonstrated anti-protease activity against trypsin and anticoagulant activity against citrated human plasma in a dose-dependent manner in in vitro assays.
Resumo:
20 and 26 S proteasomes were isolated from rat liver. The procedure developed for the 26 S proteasome resulted in greatly improved yields compared with previously published methods. A comparison of the kinetic properties of 20 and 26 S proteasomes showed significant differences in the kinetic characteristics with certain substrates and differences in the effects of a protein substrate on peptidase activity. Observed differences in the kinetics of peptidylglutamyl peptide hydrolase activity suggest that the 26 S complex cannot undergo the conformational changes of 20 S proteasomes at high concentrations of the substrate benzyloxycarbonyl (Z) -Leu-Leu-Glu-b-naphthylamide. Various inhibitors that differentially affect the trypsin-like and chymotrypsin-like activities have been identified. Ala-Ala-Phe-chloromethyl (CH2Cl) inhibits chymotrypsin-like activity assayed with succinyl (Suc) -Leu-Leu-Val-Tyr-AMC, but surprisingly not hydrolysis of Ala-Ala-Phe-7-amido-4-methylcoumarin (AMC). Tyr-Gly-Arg-CH2Cl inhibits Suc-Leu-Leu-Val-Tyr-AMC hydrolysis as well as trypsinlike activity measured with t-butoxycarbonyl (Boc) -Leu-Ser-Thr-Arg-AMC, while Z-Phe-Gly-Tyr-diazomethyl (CHN2) was found to inhibit only the two chymotrypsin- like activities. Radiolabeled forms of peptidyl chloromethane and peptidyl diazomethane inhibitors, [3H]acetyl-Ala-Ala-Phe-CH2Cl, [3H]acetyland radioiodinated Tyr-Gly-Arg-CH2Cl, and Z-Phe-Gly- Tyr-(125I-CHN2), have been used to identify catalytic components associated with each of the three peptidase activities. In each case, incorporation of the label could be blocked by prior treatment of the proteasomes with known active site-directed inhibitors, calpain inhibitor 1 or 3,4-dichloroisocoumarin. Subunits of labeled proteasomes were separated either by reverse phase-HPLC and SDS-polyacrylamide gel electrophoresis or by twodimensional polyacrylamide gel electrophoresis followed by autoradiography/fluorography and immunoblotting with subunit-specific antibodies. In each case, label was found to be incorporated into subunits C7, MB1, and LMP7 but in different relative amounts depending on the inhibitor used, consistent with the observed effects on the different peptidase activities. The results strongly suggest a relationship between trypsin-like activity and chymotrypsin-like activity. They also help to relate the different subunits of the complex to the assayed multicatalytic endopeptidase activities
Resumo:
Indicators of mitochondrial function were studied in two different cell culture models of cis-diamminedichloroplatinum-II (CDDP) resistance: the intrinsically resistant human ovarian cancer cell line CI-80-13S, and resistant clones (HeLa-S1a and HeLa-S1b) generated by stable expression of the serine protease inhibitor—plasminogen activator inhibitor type-2 (PAI-2), in the human cervical cancer cell line HeLa. In both models, CDDP resistance was associated with sensitivity to killing by adriamycin, etoposide, auranofin, bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride {[Au(DPPE)2]Cl}, CdCl2 and the mitochondrial inhibitors rhodamine-123 (Rhl23), dequalinium chloride (DeCH), tetraphenylphosphonium (TPP), and ethidium bromide (EtBr) and with lower constitutive levels of ATP. Unlike the HeLa clones, CI-80-13S cells were additionally sensitive to chloramphenicol, 1-methyl-4-phenylpyridinium ion (MPP+), rotenone, thenoyltrifluoroacetone (TTFA), and antimycin A, and showed poor reduction of 1-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), suggesting a deficiency in NADH dehydrogenase and/or succinate dehydrogenase activities. Total platinum uptake and DNA-bound platinum were slightly lower in CI-80-13S than in sensitive cells. The HeLa-S1a and HeLa-S1b clones, on the other hand, showed poor reduction of triphenyltetrazolium chloride (TTC), indicative of low cytochrome c oxidase activity. Total platinum uptake by HeLa-S1a was similar to HeLa, but DNA-bound platinum was much lower than for the parent cell line. The mitochondria of CI-80-13S and HeLa-S1a showed altered morphology and were fewer in number than those of JAM and HeLa. In both models, CDDP resistance was associated with less platinum accumulation and with mitochondrial and membrane defects, brought about one case with expression of a protease inhibitor which is implicated in tumor progression. Such markers may identify tumors suitable for treatment with gold phosphine complexes or other mitochondrial inhibitors.
Resumo:
Indicators of mitochondrial function were studied in two different cell culture models of cis-diamminedichloroplatinum-II (CDDP) resistance: the intrinsically resistant human ovarian cancer cell line CI-80-13S, and resistant clones (HeLa-S1a and HeLa-S1b) generated by stable expression of the serine protease inhibitor—plasminogen activator inhibitor type-2 (PAI-2), in the human cervical cancer cell line HeLa. In both models, CDDP resistance was associated with sensitivity to killing by adriamycin, etoposide, auranofin, bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride {[Au(DPPE)2]Cl}, CdCl2 and the mitochondrial inhibitors rhodamine-123 (Rhl23), dequalinium chloride (DeCH), tetraphenylphosphonium (TPP), and ethidium bromide (EtBr) and with lower constitutive levels of ATP. Unlike the HeLa clones, CI-80-13S cells were additionally sensitive to chloramphenicol, 1-methyl-4-phenylpyridinium ion (MPP+), rotenone, thenoyltrifluoroacetone (TTFA), and antimycin A, and showed poor reduction of 1-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), suggesting a deficiency in NADH dehydrogenase and/or succinate dehydrogenase activities. Total platinum uptake and DNA-bound platinum were slightly lower in CI-80-13S than in sensitive cells. The HeLa-S1a and HeLa-S1b clones, on the other hand, showed poor reduction of triphenyltetrazolium chloride (TTC), indicative of low cytochrome c oxidase activity. Total platinum uptake by HeLa-S1a was similar to HeLa, but DNA-bound platinum was much lower than for the parent cell line. The mitochondria of CI-80-13S and HeLa-S1a showed altered morphology and were fewer in number than those of JAM and HeLa. In both models, CDDP resistance was associated with less platinum accumulation and with mitochondrial and membrane defects, brought about one case with expression of a protease inhibitor which is implicated in tumor progression. Such markers may identify tumors suitable for treatment with gold phosphine complexes or other mitochondrial inhibitors.
Resumo:
The mechanistic details of the pathogenesis of Chlamydia, an obligate intracellular pathogen of global importance, have eluded scientists due to the scarcity of traditional molecular genetic tools to investigate this organism. Here we report a chemical biology strategy that has uncovered the first essential protease for this organism. Identification and application of a unique CtHtrA inhibitor (JO146) to cultures of Chlamydia resulted in a complete loss of viable elementary body formation. JO146 treatment during the replicative phase of development resulted in a loss of Chlamydia cell morphology, diminishing inclusion size, and ultimate loss of inclusions from the host cells. This completely prevented the formation of viable Chlamydia elementary bodies. In addition to its effect on the human C. trachomatis strain, JO146 inhibited the viability of the mouse strain, Chlamydia muridarum, both in vitro and in vivo. Thus, we report a chemical biology approach to establish an essential role for Chlamydia CtHtrA. The function of CtHtrA for Chlamydia appears to be essential for maintenance of cell morphology during replicative the phase and these findings provide proof of concept that proteases can be targetted for anti-microbial therapy for intracellular pathogens.
Resumo:
Background Ephrin-B2 is the sole physiologically-relevant ligand of the receptor tyrosine kinase EphB4, which is over-expressed in many epithelial cancers, including 66% of prostate cancers, and contributes to cancer cell survival, invasion and migration. Crucially, however, the cancer-promoting EphB4 signalling pathways are independent of interaction with its ligand ephrin-B2, as activation of ligand-dependent signalling causes tumour suppression. Ephrin-B2, however, is often found on the surface of endothelial cells of the tumour vasculature, where it can regulate angiogenesis to support tumour growth. Proteolytic cleavage of endothelial cell ephrin-B2 has previously been suggested as one mechanism whereby the interaction between tumour cell-expressed EphB4 and endothelial cell ephrin-B2 is regulated to support both cancer promotion and angiogenesis. Methods An in silico approach was used to search accessible surfaces of 3D protein models for cleavage sites for the key prostate cancer serine protease, KLK4, and this identified murine ephrin-B2 as a potential KLK4 substrate. Mouse ephrin-B2 was then confirmed as a KLK4 substrate by in vitro incubation of recombinant mouse ephrin-B2 with active recombinant human KLK4. Cleavage products were visualised by SDS-PAGE, silver staining and Western blot and confirmed by N-terminal sequencing. Results At low molar ratios, KLK4 cleaved murine ephrin-B2 but other prostate-specific KLK family members (KLK2 and KLK3/PSA) were less efficient, suggesting cleavage was KLK4-selective. The primary KLK4 cleavage site in murine ephrin-B2 was verified and shown to correspond to one of the in silico predicted sites between extracellular domain residues arginine 178 and asparagine 179. Surprisingly, the highly homologous human ephrin-B2 was poorly cleaved by KLK4 at these low molar ratios, likely due to the 3 amino acid differences at this primary cleavage site. Conclusion These data suggest that in in vivo mouse xenograft models, endogenous mouse ephrin-B2, but not human tumour ephrin-B2, may be a downstream target of cancer cell secreted human KLK4. This is a critical consideration when interpreting data from murine explants of human EphB4+/KLK4+ cancer cells, such as prostate cancer cells, where differential effects may be seen in mouse models as opposed to human clinical situations.
Resumo:
In the avian model of myopia, retinal image degradation quickly leads to ocular enlargement. We now give evidence that regionally specific changes in ocular size are correlated with both biomechanical indices of scleral remodeling, e.g. hydration capacity and with biochemical changes in proteinase activities. The latter include a 72 kDa matrix metalloproteinase (putatively MMP-2), other gelatin-binding MMPs, an acid pH MMP and a serine protease. Specifically, we have found that increases in scleral hydrational capacity parallel increases in collagen degrading activities. Gelatin zymography reveals that eyes with 7 days of retinal image degradation have elevated levels (1.4-fold) of gelatinolytic activities at 72 and 67 kDa M(r) in equatorial and posterior pole regions of the sclera while, after 14 days of treatment, increases are no longer apparent. Lower M(r) zymographic activities at 50, 46 and 37 kDa M(r) are collectively increased in eyes treated for both 7 and 14 days (1.4- and 2.4-fold respectively) in the equator and posterior pole areas of enlarging eyes. Western blot analyses of scleral extracts with an antibody to human MMP-2 reveals immunoreactive bands at 65, 30 and 25 kDa. Zymograms incubated under slightly acidic conditions reveal that, in enlarging eyes, MMP activities at 25 and 28 kDa M(r) are increased in scleral equator and posterior pole (1.6- and 4.5-fold respectively). A TIMP-like protein is also identified in sclera and cornea by Western blot analysis. Finally, retinal-image degradation also increases (~2.6-fold) the activity of a 23.5 kDa serine proteinase in limbus, equator and posterior pole sclera that is inhibited by aprotinin and soybean trypsin inhibitor. Taken together, these results indicate that eye growth induced by retinal-image degradation involves increases in the activities of multiple scleral proteinases that could modify the biomechanical properties of scleral structural components and contribute to tissue remodeling and growth.
Resumo:
Sex hormone-binding globulin (SHBG) is a homodimeric plasma glycoprotein that is the major sex steroid carrier-protein in the bloodstream and functions also as a key regulator of steroid bioavailability within target tissues, such as the prostate. Additionally, SHBG binds to prostatic cell membranes via the putative and unidentified SHBG receptor (RSHBG), activating a signal transduction pathway implicated in stimulating both proliferation and expression of prostate specific antigen (PSA) in prostate cell lines in vitro. A yeast-two hybrid assay suggested an interaction between SHBG and kallikrein-related protease (KLK) 4, which is a serine protease implicated in the progression of prostate cancer. The potential interaction between these two proteins was investigated in this PhD thesis to determine whether SHBG is a proteolytic substrate of KLK4 and other members of the KLK family including KLK3/PSA, KLK7 and KLK14. Furthermore, the effects from SHBG proteolytic degradation on SHBG-regulated steroid bioavailability and the activation of the putative RSHBG signal transduction pathway were examined in the LNCaP prostate cancer cell line. SHBG was found to be a proteolytic substrate of the trypsin-like KLK4 and KLK14 in vitro, yielding several proteolysis fragments. Both chymotrypsin-like PSA and KLK7 displayed insignificant proteolytic activity against SHBG. The kinetic parameters of SHBG proteolysis by KLK4 and KLK14 demonstrate a strong enzyme-substrate binding capacity, possessing a Km of 1.2 ± 0.7 µM and 2.1 ± 0.6 µM respectively. The catalytic efficiencies (kcat/Km) of KLK4 and KLK14 proteolysis of SHBG were 1.6 x 104 M-1s-1 and 3.8 x 104 M-1s-1 respectively, which were comparable to parameters previously reported for peptide substrates. N-terminal sequencing of the fragments revealed cleavage near the junction of the N- and C-terminal laminin globulin-like (G-like) domains of SHBG, resulting in the division of the two globulins and ultimately the full degradation of these fragments by KLK4 and KLK14 over time. Proteolytic fragments that may retain steroid binding were rapidly degraded by both proteases, while fragments containing residues beyond the steroid binding pocket were less degraded over the same period of time. Degradation of SHBG was inhibited by the divalent metal cations calcium and zinc for KLK4, and calcium, zinc and magnesium for KLK14. The human secreted serine protease inhibitors (serpins), α1-antitrypsin and α2-antiplasmin, inhibited KLK4 and KLK14 proteolysis of SHBG; α1-antichymotrypsin inhibited KLK4 but not KLK14 activity. The inhibition by these serpins was comparable and in some cases more effective than general trypsin protease inhibitors such as aprotinin and phenylmethanesulfonyl fluoride (PMSF). The binding of 5α-dihydrotestosterone (DHT) to SHBG modulated interactions with KLK4 and KLK14. Steroid-free SHBG was more readily digested by both enzymes than DHT-bound SHBG. Moreover, a binding interaction exists between SHBG and pro-KLK4 and pro-KLK14, with DHT strengthening the binding to pro-KLK4 only. The inhibition of androgen uptake by cultured prostate cancer cells, mediated by SHBG steroid-binding, was examined to assess whether SHBG proteolysis by KLK4 and KLK14 modulated this process. Proteolytic digestion eliminated the ability of SHBG to inhibit the uptake of DHT from conditioned media into LNCaP cells. Therefore, the proteolysis of SHBG by KLK4 and KLK14 increased steroid bioavailability in vitro, leading to an increased uptake of androgens by prostate cancer cells. Interestingly, different transcriptional responses of PSA and KLK2, which are androgen-regulated genes, to DHT-bounsd SHBG treatment were observed between low and high passage number LNCaP cells (lpLNCaP and hpLNCaP respectively). HpLNCaP cells treated with DHT-bound SHBG demonstrated a significant synergistic upregulation of PSA and KLK2 above DHT or SHBG treatment alone, which is similar to previously reported downstream responses from RSHBG-mediated signaling activation. As this result was not seen in lpLNCaP cells, only hpLNCaP cells were further investigated to examine the modulation of potential RSHBG activity by KLK4 and KLK14 proteolysis of SHBG. Contrary to reported results, no increase in intracellular cAMP was observed in hpLNCaP cells when treated with SHBG in the presence and absence of either DHT or estradiol. As a result, the modulation of RSHBG-mediated signaling activation could not be determined. Finally, the identification of the RSHBG from both breast (MCF-7) and prostate cancer (LNCaP) cell lines was attempted. Fluorescently labeled peptides corresponding to the putative receptor binding domain (RBD) of SHBG were shown to be internalized by MCF-7 cells. Crosslinking of the RBD peptide to the cell surfaces of both MCF-7 and LNCaP cells, demonstrated the interaction of the peptide with several targets. These targets were then captured using RBD peptides synthesized onto a hydrophilic scaffold and analysed by mass spectrometry. The samples captured by the RBD peptide returned statistically significantly matches for cytokeratin 8, 18 and 19 as well as microtubule-actin crosslinking factor 1, which may indicate a novel interaction between SHBG and these proteins, but ultimately failed to detect a membrane receptor potentially responsible for the putative RSHBG-mediated signaling. This PhD project has reported the proteolytic processing of SHBG by two members of the kallikrein family, KLK4 and KLK14. The effect of SHBG proteolysis by KLK4 and KLK14 on RSHBG-mediated signaling activation was unable to be determined as the reported signal transduction pathway was not activated after treatment with SHBG, in combination with either DHT or estradiol. However, the digestion of SHBG by these two proteases positively regulated androgen bioavailability to prostate cancer cells in vitro. The increased uptake of androgens is deleterious in prostate cancer due to the promotion of proliferation, metastasis, invasion and the inhibition of apoptosis. The increased bioavailability of androgens, from SHBG proteolysis by KLK4 and KLK14, may therefore promote both carcinogenesis and progression of prostate cancer. Finally, this information may contribute to the development of therapeutic treatment strategies for prostate cancer by inhibiting the proteolysis of SHBG, by KLK4 and KLK14, to prevent the increased uptake of androgens by hormone-dependent cancerous tissues.
Resumo:
A number of reports have demonstrated the importance of the CUB domaincontaining protein 1 (CDCP1) in facilitating cancer progression in animal models and the potential of this protein as a prognostic marker in several malignancies. CDCP1 facilitates metastasis formation in animal models by negatively regulating anoikis, a type of apoptosis triggered by the loss of attachment signalling from cell-cell contacts or cell-extra cellular matrix (ECM) contacts. Due to the important role CDCP1 plays in cancer progression in model systems, it is considered a potential drug target to prevent the metastatic spread of cancers. CDCP1 is a highly glycosylated 836 amino acid cell surface protein. It has structural features potentially facilitating protein-protein interactions including 14 N-glycosylation sites, three CUB-like domains, 20 cysteine residues likely to be involved in disulfide bond formation and five intracellular tyrosine residues. CDCP1 interacts with a variety of proteins including Src family kinases (SFKs) and protein kinase C ä (PKCä). Efforts to understand the mechanisms regulating these interactions have largely focussed on three CDCP1 tyrosine residues Y734, Y743 and Y762. CDCP1-Y734 is the site where SFKs phosphorylate and bind to CDCP1 and mediate subsequent phosphorylation of CDCP1-Y743 and -Y762 which leads to binding of PKCä at CDCP1-Y762. The resulting trimeric protein complex of SFK•CDCP1•PKCä has been proposed to mediate an anti-apoptotic cell phenotype in vitro, and to promote metastasis in vivo. The effect of mutation of the three tyrosines on interactions of CDCP1 with SFKs and PKCä and the consequences on cell phenotype in vitro and in vivo have not been examined. CDCP1 has a predicted molecular weight of ~90 kDa but is usually detected as a protein which migrates at ~135 kDa by Western blot analysis due to its high degree of glycosylation. A low molecular weight form of CDCP1 (LMWCDCP1) of ~70 kDa has been found in a variety of cancer cell lines. The mechanisms leading to the generation of LMW-CDCP1 in vivo are not well understood but an involvement of proteases in this process has been proposed. Serine proteases including plasmin and trypsin are able to proteolytically process CDCP1. In addition, the recombinant protease domain of the serine protease matriptase is also able to cleave the recombinant extracellular portion of CDCP1. Whether matriptase is able to proteolytically process CDCP1 on the cell surface has not been examined. Importantly, proteolytic processing of CDCP1 by trypsin leads to phosphorylation of its cell surface-retained portion which suggests that this event leads to initiation of an intracellular signalling cascade. This project aimed to further examine the biology of CDCP1 with a main of focus on exploring the roles played by CDCP1 tyrosine residues. To achieve this HeLa cells stably expressing CDCP1 or the CDCP1 tyrosine mutants Y734F, Y743F and Y762F were generated. These cell lines were used to examine: • The roles of the tyrosine residues Y734, Y743 and Y762 in mediating interactions of CDCP1 with binding proteins and to examine the effect of the stable expression on HeLa cell morphology. • The ability of the serine protease matriptase to proteolytically process cell surface CDCP1 and to examine the consequences of this event on HeLa cell phenotype and cell signalling in vitro. • The importance of these residues in processes associated with cancer progression in vitro including adhesion, proliferation and migration. • The role of these residues on metastatic phenotype in vivo and the ability of a function-blocking anti-CDCP1 antibody to inhibit metastasis in the chicken embryo chorioallantoic membrane (CAM) assay. Interestingly, biochemical experiments carried out in this study revealed that mutation of certain CDCP1 tyrosine residues impacts on interactions of this protein with binding proteins. For example, binding of SFKs as well as PKCä to CDCP1 was markedly decreased in HeLa-CDCP1-Y734F cells, and binding of PKCä was also reduced in HeLa-CDCP1-Y762F cells. In contrast, HeLa-CDCP1-Y743F cells did not display altered interactions with CDCP1 binding proteins. Importantly, observed differences in interactions of CDCP1 with binding partners impacted on basal phosphorylation of CDCP1. It was found that HeLa-CDCP1, HeLa-CDCP1-Y743F and -Y762F displayed strong basal levels of CDCP1 phosphorylation. In contrast, HeLa-CDCP1-Y734F cells did not display CDCP1 phosphorylation but exhibited constitutive phosphorylation of focal adhesion kinase (FAK) at tyrosine 861. Significantly, subsequent investigations to examine this observation suggested that CDCP1-Y734 and FAK-Y861 are competitive substrates for SFK-mediated phosphorylation. It appeared that SFK-mediated phosphorylation of CDCP1- Y734 and FAK-Y861 is an equilibrium which shifts depending on the level of CDCP1 expression in HeLa cells. This suggests that the level of CDCP1 expression may act as a regulatory mechanism allowing cells to switch from a FAK-Y861 mediated pathway to a CDCP1-Y734 mediated pathway. This is the first time that a link between SFKs, CDCP1 and FAK has been demonstrated. One of the most interesting observations from this work was that CDCP1 altered HeLa cell morphology causing an elongated and fibroblastic-like appearance. Importantly, this morphological change depended on CDCP1- Y734. In addition, it was observed that this change in cell morphology was accompanied by increased phosphorylation of SFK-Y416. This suggests that interactions of SFKs with CDCP1-Y734 increases SFK activity since SFKY416 is critical in regulating kinase activity of these proteins. The essential role of SFKs in mediating CDCP1-induced HeLa cell morphological changes was demonstrated using the SFK-selective inhibitor SU6656. This inhibitor caused reversion of HeLa-CDCP1 cell morphology to an epithelial appearance characteristic of HeLa-vector cells. Significantly, in vitro studies revealed that certain CDCP1-mediated cell phenotypes are mediated by cellular pathways dependent on CDCP1 tyrosine residues whereas others are independent of these sites. For example, CDCP1 expression caused a marked increase in HeLa cell motility that was independent of CDCP1 tyrosine residues. In contrast, CDCP1- induced decrease in HeLa cell proliferation was most prominent in HeLa- CDCP1-Y762F cells, potentially indicating a role for this site in regulating proliferation in HeLa cells. Another cellular event which was identified to require phosphorylation of a particular CDCP1 tyrosine residue is adhesion to fibronectin. It was observed that the CDCP1-mediated strong decrease in adhesion to fibronectin is mostly restored in HeLa-CDCP1-Y743F cells. This suggests a possible role for CDCP1-Y743 in causing a CDCP1-mediated decrease in adhesion. Data from in vivo experiments indicated that HeLa-CDCP1-Y734F cells are more metastic than HeLa-CDCP1 cells in vivo. This indicates that interaction of CDCP1 with SFKs and PKCä may not be required for CDCP1-mediated metastasis formation of HeLa cells in vivo. The metastatic phenotype of these cells may be caused by signalling involving FAK since HeLa-CDCP1- Y734F cells are the only CDCP1 expressing cells displaying constitutive phosphorylation of FAK-Y861. HeLa-CDCP1-Y762F cells displayed a very low metastatic ability which suggests that this CDCP1 tyrosine residue is important in mediating a pro-metastatic phenotype in HeLa cells. More detailed exploration of cellular events occurring downstream of CDCP1-Y734 and -Y762 may provide important insights into the mechanisms altering the metastatic ability of CDCP1 expressing HeLa cells. Complementing the in vivo studies, anti-CDCP1 antibodies were employed to assess whether these antibodies are able to inhibit metastasis of CDCP1 and CDCP1 tyrosine mutants expressing HeLa cells. It was found that HeLa- CDCP1-Y734F cells were the only cell line which was markedly reduced in the ability to metastasise. In contrast, the ability of HeLa-CDCP1, HeLa- CDCP1-Y743F and -Y762F cells to metastasise in vivo was not inhibited. These data suggest a possible role of interactions of CDCP1 with SFKs, occurring at CDCP1-Y734, in preventing an anti-metastatic effect of anti- CDCP1 antibodies in vivo. The proposal that SFKs may play a role in regulating anti-metastatic effects of anti-CDCP1 antibodies was supported by another experiment where differences between HeLa-CDCP1 cells and CDCP1 expressing HeLa cells (HeLa-CDCP1-S) from collaborators at the Scripps Research Institute were examined. It was found that HeLa-CDCP1-S cells express different SFKs than CDCP1 expressing HeLa cells generated for this study. This is important since HeLa-CDCP1-S cells can be inhibited in their metastatic ability using anti-CDCP1 antibodies in vivo. Importantly, these data suggest that further examinations of the roles of SFKs in facilitating anti-metastatic effects of anti-CDCP1 antibodies may give insights into how CDCP1 can be blocked to prevent metastasis in vivo. This project also explored the ability of the serine protease matriptase to proteolytically process cell surface localised CDCP1 because it is unknown whether matriptase can cleave cell surface CDCP1 as it has been reported for other proteases such as trypsin and plasmin. Furthermore, the consequences of matriptase-mediated proteolysis on cell phenotype in vitro and cell signalling were examined since recent reports suggested that proteolysis of CDCP1 leads to its phosphorylation and may initiate cell signalling and consequently alter cell phenotype. It was found that matriptase is able to proteolytically process cell surface CDCP1 at low nanomolar concentrations which suggests that cleavage of CDCP1 by matriptase may facilitate the generation of LWM-CDCP1 in vivo. To examine whether matriptase-mediated proteolysis induced cell signalling anti-phospho Erk 1/2 Western blot analysis was performed as this pathway has previously been examined to study signalling in response to proteolytic processing of cell surface proteins. It was found that matriptase-mediated proteolysis in CDCP1 expressing HeLa cells initiated intracellular signalling via Erk 1/2. Interestingly, this increase in phosphorylation of Erk 1/2 was also observed in HeLa-vector cells. This suggested that initiation of cell signalling via Erk 1/2 phosphorylation as a result of matriptase-mediated proteolysis occurs by pathways independent of CDCP1. Subsequent investigations measuring the flux of free calcium ions and by using a protease-activated receptor 2 (PAR2) agonist peptide confirmed this hypothesis. These data suggested that matriptase-mediated proteolysis results in cell signalling via a pathway induced by the activation of PAR2 rather than by CDCP1. This indicates that induction of cell signalling in HeLa cells as a consequence of matriptase-mediated proteolysis occurs via signalling pathways which do not involve phosphorylation of Erk 1/2. Consequently, it appears that future attempts should focus on the examination of cellular pathways other than Erk 1/2 to elucidate cell signalling initiated by matriptase-mediated proteolytic processing of CDCP1. The data presented in this thesis has explored in vitro and in vivo aspects of the biology of CDCP1. The observations summarised above will permit the design of future studies to more precisely determine the role of CDCP1 and its binding partners in processes relevant to cancer progression. This may contribute to further defining CDCP1 as a target for cancer treatment.