69 resultados para tresna bat
em Queensland University of Technology - ePrints Archive
Resumo:
Global warming is already threatening many animal and plant communities worldwide, however, the effect of climate change on bat populations is poorly known. Understanding the factors influencing the survival of bats is crucial to their conservation, and this cannot be achieved solely by modern ecological studies. Palaeoecological investigations provide a perspective over a much longer temporal scale, allowing the understanding of the dynamic patterns that shaped the distribution of modern taxa. In this study twelve microchiropteran fossil assemblages from Mount Etna, central-eastern Queensland, ranging in age from more than 500,000 years to the present day, were investigated. The aim was to assess the responses of insectivorous bats to Quaternary environmental changes, including climatic fluctuations and recent anthropogenic impacts. In particular, this investigation focussed on the effects of increasing late Pleistocene aridity, the subsequent retraction of rainforest habitat, and the impact of cave mining following European settlement at Mount Etna. A thorough examination of the dental morphology of all available extant Australian bat taxa was conducted in order to identify the fossil taxa prior to their analysis in term of species richness and composition. This detailed odontological work provided new diagnostic dental characters for eighteen species and one genus. It also provided additional useful dental characters for three species and seven genera. This odontological analysis allowed the identification of fifteen fossil bat taxa from the Mount Etna deposits, all being representatives of extant bats, and included ten taxa identified to the species level (i.e., Macroderma gigas, Hipposideros semoni, Rhinolophus megaphyllus, Miniopterus schreibersii, Miniopterus australis, Scoteanax rueppellii, Chalinolobus gouldii, Chalinolobus dwyeri, Chalinolobus nigrogriseus and Vespadelus troughtoni) and five taxa identified to the generic level (i.e., Mormopterus, Taphozous, Nyctophilus, Scotorepens and Vespadelus). Palaeoecological analysis of the fossil taxa revealed that, unlike the non-volant mammal taxa, bats have remained essentially stable in terms of species diversity and community membership between the mid-Pleistocene rainforest habitat and the mesic habitat that occurs today in the region. The single major exception is Hipposideros semoni, which went locally extinct at Mount Etna. Additionally, while intensive mining operations resulted in the abandonment of at least one cave that served as a maternity roost in the recent past, the diversity of the Mount Etna bat fauna has not declined since European colonisation. The overall resilience through time of the bat species discussed herein is perhaps due to their unique ecological, behavioural, and physiological characteristics as well as their ability to fly, which have allowed them to successfully adapt to their changing environment. This study highlights the importance of palaeoecological analyses as a tool to gain an understanding of how bats have responded to environmental change in the past and provides valuable information for the conservation of threatened modern species, such as H. semoni.
Resumo:
The making of the modern world has long been fuelled by utopian images that are blind to ecological reality. Botanical gardens are but one example – who typically portray themselves as miniature, isolated 'edens on earth'. Whilst respected, heritage-laden institutions such as the Royal Botanical Gardens in Sydney, Australia promote such an idealised image they are now self-evidently also the vital ‘lungs’ of a crowded city as well as a critical habitats for threatened biodiversity (in this case notably flying foxes). In 2010 the 'Remnant Emergency Artlab' set out to alleviate this utopian hangover through a creative provocation called the 'Botanical Gardens ‘X-Tension’ - an imagined city-wide, distributed, network of 'ecological gardens' - in order to ask, what now needs to be better understood, connected and therefore ultimately conserved?
Resumo:
The making of the modern world has long been fuelled by utopian images that are blind to ecologi- cal reality. Botanical gardens are but one example – who typically portray themselves as miniature, isolated 'edens on earth', whereas they are now in many cases self-evidently also the vital ‘lungs’ of crowded cities, as well as critical habitats for threat- ened biodiversity. In 2010 the 'Remnant Emergency Art lab' set out to question utopian thinking through a creative provocation called the 'Botanical Gardens ‘X-Tension’ - an imagined city-wide, distributed, network of 'ecological gardens' suited to both bat and human needs, in order to ask, what now needs to be better understood, connected and therefore ultimately conserved.
Resumo:
Bats account for one-fifth of mammalian species, are the only mammals with powered flight, and are among the few animals that echolocate. The insect-eating Brandt’s bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4–8 g adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity. Here we report sequencing and analysis of the Brandt’s bat genome and transcriptome, which suggest adaptations consistent with echolocation and hibernation, as well as altered metabolism, reproduction and visual function. Unique sequence changes in growth hormone and insulin-like growth factor 1 receptors are also observed. The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt’s bat.
Resumo:
The lesser short-tailed bat, Mystacina tuberculata, is the only native mammalian pollinator in New Zealand and the only fully temperate bat pollinator in the world. Although this unique status as a pollinator is well recognized, its reduced abundance and cryptic behaviour means little research has been undertaken to assess the contribution of the lesser short-tailed bat (hereafter ‘short-tailed bat’) to pollination in New Zealand. Accordingly, pollination by short-tailed bats has been assumed to be comparatively inconsequential, and the potential impacts of the bat's widespread extirpation have been overlooked. The recent discovery that the short-tailed bat is a major pollinator for at least some of the plants it visits emphasizes the importance of exploring this species' role as a pollinator. Here, our aim was to provide an assessment of the competition for short-tailed bat pollination through study of the temporal variation of flowering. Bats were sampled for pollen, and phenology surveys were conducted simultaneously. We found that the amount and type of pollen carried by the bats varied temporally, with one pollen type dominating samples at any given time. The two plants most consistently observed in the pollen samples flowered sequentially with little temporal overlap, suggesting that their flowering phenology may be adapted to minimize competition for the pollination services of the short-tailed bat.
Resumo:
We investigated effects of roost loss due to clear-fell harvest on bat home range. The study took place in plantation forest, inhabited by the New Zealand long-tailed bat (Chalinolobus tuberculatus), in which trees are harvested between the ages 26-32 years. We determined home ranges by radiotracking different bats in areas that had and had not been recently clear-fell harvested. Home ranges were smaller in areas that had been harvested. Adult male bats selected 20-25 year old stands within home ranges before and after harvest. Males selected edges with open unplanted areas when harvest had not occurred but no longer selected these at proportions greater than their availability post harvest, probably because they were then readily available. This is the first radiotracking study to demonstrate a change in home range size and selection concomitant with felling of large areas of plantation forest, and thus quantify negative effects of forestry operations on this speciose group. The use of smaller home ranges post-harvest may reflect smaller colony sizes and lower roost availability, both of which may increase isolation of colonies and vulnerability to local extinction.
Resumo:
Clear-fell harvest of forest concerns many wildlife biologists because of loss of vital resources such as roosts or nests, and effects on population viability. However, actual impact has not been quantified. Using New Zealand long-tailed bats (Chalinolobus tuberculatus) as a model species we investigated impacts of clear-fell logging on bats in plantation forest. C. tuberculatus roost within the oldest stands in plantation forest so it was likely roost availability would decrease as harvest operations occurred. We predicted that post-harvest: (1) roosting range sizes would be smaller, (2) fewer roosts would be used, and (3) colony size would be smaller. We captured and radiotracked C. tuberculatus to day-roosts in Kinleith Forest, an exotic plantation forest, over three southern hemisphere summers (Season 1 October 2006–March 2007; Season 2 November 2007–March 2008; and Season 3 November 2008–March 2009). Individual roosting ranges (100% MCPs) post harvest were smaller than those in areas that had not been harvested, and declined in area during the 3 years. Following harvest, bats used fewer roosts than those in areas that had not been harvested. Over 3 years 20.7% of known roosts were lost: 14.5% due to forestry operations and 6.2% due to natural tree fall. Median colony size was 4.0 bats (IQR = 2.0–8.0) and declined during the study, probably because of locally high levels of roost loss. Post harvest colonies were smaller than colonies in areas that had not been harvested. Together, these results suggest the impact of clear-fell harvest on long-tailed bat populations is negative.
Resumo:
Individuals' home ranges are constrained by resource distribution and density, population size, and energetic requirements. Consequently, home ranges and habitat selection may vary between individuals of different sex and reproductive conditions. Whilst home ranges of bats are well-studied in native habitats, they are often not well understood in modified landscapes, particularly exotic plantation forests. Although Chalinolobus tuberculatus (Vespertilionidae, Chiroptera) are present in plantation forests throughout New Zealand their home ranges have only been studied in native forest and forest-agricultural mosaic and no studies of habitat selection that included males had occurred in any habitat type. Therefore, we investigated C. tuberculatus home range and habitat selection within exotic plantation forest. Home range sizes did not differ between bats of different reproductive states. Bats selected home ranges with higher proportions of relatively old forest than was available. Males selected edges with open unplanted areas within their home ranges, which females avoided. We suggest males use these edges, highly profitable foraging areas with early evening peaks in invertebrate abundance, to maintain relatively low energetic demands. Females require longer periods of invertebrate activity to fulfil their needs so select older stands for foraging, where invertebrate activity is higher. These results highlight additional understanding gained when data are not pooled across sexes. Mitigation for harvest operations could include ensuring that areas suitable for foraging and roosting are located within a radius equal to the home range of this bat species.
Resumo:
Linkage of echolocation call production with contraction of flight muscles has been suggested to reduce the energetic cost of flight with echolocation, such that the overall cost is approximately equal to that of flight alone. However, the pattern of call production with limb movement in terrestrially agile bats has never been investigated. We used synchronised high-speed video and audio recordings to determine patterns of association between echolocation call production and limb motion by Mystacina tuberculata Gray 1843 as individuals walked and flew, respectively. Results showed that there was no apparent linkage between call production and limb motion when bats walked. When in flight, two calls were produced per wingbeat, late in the downstroke and early in the upstroke. When bats walked, calls were produced at a higher rate, but at a slightly lower intensity, compared with bats in flight. These results suggest that M. tuberculata do not attempt to reduce the cost of terrestrial locomotion and call production through biomechanical linkage. They also suggest that the pattern of linkage seen when bats are in flight is not universal and that energetic savings cannot necessarily be explained by contraction of muscles associated with the downstroke alone.
Resumo:
Environmental certification schemes have stimulated increasing interest in biodiversity and its management within exotic plantation forests. These schemes expect management to be scientifically-based, even though little is known about how often, or which, native species use exotic plantation forests. Greater knowledge of the ecology of native species within exotic plantation forests is required to advise management and reduce risks to native species, particularly those that are rare, such as the New Zealand long-tailed bat (Chalinolobus tuberculatus). Long-tailed bats use exotic plantation forests throughout New Zealand but need protection from the impacts of forest management, and particularly clear-fell harvest, that is achievable only through a better understanding of their biology. The consequences of the current reduced re-planting, and the conversion of plantation forests into pasture resulting in smaller forested areas, should not be ignored because they may be associated with reductions in long-tailed bat populations. We review the current knowledge of long-tailed bats' use of exotic plantation forests, and report for the first time which exotic plantations long-tailed bats are known to use. We make recommendations for the design of monitoring programmes to detect long-tailed bats within plantation forests, and for research into the effects of forest management, especially logging, and comment on the likely impacts of reductions in forested areas on long-tailed bats.
Resumo:
Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA), support vector machines (SVM) and ensembles of neural networks (ENN). Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97%) consistently outperformed SVMs (mean identification rate – 87%). Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.
Resumo:
Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.
Resumo:
This paper describes the feeding behaviour ofRousettus leschenaulti Desmarest, 1820 on lychees, the preferred cultivated food of this bat in captive conditions. We found that feeding comprised 25–30% of the total activity of these animals in a flight cage and that feeding durations were not significantly different between two sexes. To evaluate the role of odor and vision in foraging behaviour, we provided animals with artificial lychees, real lychees and artificial lychees soaked in the juice of real lychees and we recorded the number of feeding approaches to the different “fruit” types. The results indicated that bats approached real fruit significantly more than artificial fruit, and that the number of approaches to the soaked artificial fruit was also significantly higher than to the unsoaked artificial fruit. There were no significant differences between sexes in approach rates to any “fruit” type. We discuss the role of different sensory cues in the foraging behaviour of these bats and emphasize that the olfactory cue is important in detecting food resources and discriminating between different kinds of food items.
Resumo:
We studied the wing morphology, echolocation calls, foraging behaviour and flight speed of Tylonycteris pachypus and Tylonycteris robustula in Longzhou County, South China during the summer (June–August) of 2005. The wingspan, wing loading and aspect ratio of the two species were relatively low, and those of T. pachypus were lower compared with T. robustula. The echolocation calls of T. pachypus and T. robustula consist of a broadband frequency modulated (FM) sweep followed by a short narrowband FM sweep. The dominant frequency of calls of T. pachypus was 65.1 kHz, whereas that of T. robustula was 57.7 kHz. The call frequencies (including highest frequency of the call, lowest frequency of the call and frequency of the call that contained most energy) of T. pachypus were higher than those of T. robustula, and the pulse duration of the former was longer than that of the latter. The inter-pulse interval and bandwidth of the calls were not significantly different between the two species. Tylonycteris pachypus foraged in more complex environments than T. robustula, although the two species were both netted in edge habitats (around trees or houses), along pathways and in the tops of trees. Tylonycteris pachypus flew slower (straight level flight speed, 4.3 m s−1) than T. robustula (straight level flight speed, 4.8 m s−1). We discuss the relationship between wing morphology, echolocation calls, foraging behaviour and flight speed, and demonstrate resource partitioning between these two species in terms of morphological and behavioural factors.