68 resultados para toxic metals

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of increasing demand for potable water and the depletion of water resources, stormwater is a logical alternative. However, stormwater contains pollutants, among which metals are of particular interest due to their toxicity and persistence in the environment. Hence, it is imperative to remove toxic metals in stormwater to the levels prescribed by drinking water guidelines for potable use. Consequently, various techniques have been proposed, among which sorption using low cost sorbents is economically viable and environmentally benign in comparison to other techniques. However, sorbents show affinity towards certain toxic metals, which results in poor removal of other toxic metals. It was hypothesised in this study that a mixture of sorbents that have different metal affinity patterns can be used for the efficient removal of a range of toxic metals commonly found in stormwater. The performance of six sorbents in the sorption of Al, Cr, Cu, Pb, Ni, Zn and Cd, which are the toxic metals commonly found in urban stormwater, was investigated to select suitable sorbents for creating the mixtures. For this purpose, a multi criteria analytical protocol was developed using the decision making methods: PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) and GAIA (Graphical Analysis for Interactive Assistance). Zeolite and seaweed were selected for the creation of trial mixtures based on their metal affinity pattern and the performance on predetermined selection criteria. The metal sorption mechanisms employed by seaweed and zeolite were defined using kinetics, isotherm and thermodynamics parameters, which were determined using the batch sorption experiments. Additionally, the kinetics rate-limiting steps were identified using an innovative approach using GAIA and Spearman correlation techniques developed as part of the study, to overcome the limitation in conventional graphical methods in predicting the degree of contribution of each kinetics step in limiting the overall metal removal rate. The sorption kinetics of zeolite was found to be primarily limited by intraparticle diffusion followed by the sorption reaction steps, which were governed mainly by the hydrated ionic diameter of metals. The isotherm study indicated that the metal sorption mechanism of zeolite was primarily of a physical nature. The thermodynamics study confirmed that the energetically favourable nature of sorption increased in the order of Zn < Cu < Cd < Ni < Pb < Cr < Al, which is in agreement with metal sorption affinity of zeolite. Hence, sorption thermodynamics has an influence on the metal sorption affinity of zeolite. On the other hand, the primary kinetics rate-limiting step of seaweed was the sorption reaction process followed by intraparticle diffusion. The boundary layer diffusion was also found to limit the metal sorption kinetics at low concentration. According to the sorption isotherm study, Cd, Pb, Cr and Al were sorbed by seaweed via ion exchange, whilst sorption of Ni occurred via physisorption. Furthermore, ionic bonding is responsible for the sorption of Zn. The thermodynamics study confirmed that sorption by seaweed was energetically favourable in the order of Zn < Cu < Cd < Cr . Al < Pb < Ni. However, this did not agree with the affinity series derived for seaweed suggesting a limited influence of sorption thermodynamics on metal affinity for seaweed. The investigation of zeolite-seaweed mixtures indicated that mixing sorbents have an effect on the kinetics rates and the sorption affinity. Additionally, the theoretical relationships were derived to predict the boundary layer diffusion rate, intraparticle diffusion rate, the sorption reaction rate and the enthalpy of mixtures based on that of individual sorbents. In general, low coefficient of determination (R2) for the relationships between theoretical and experimental data indicated that the relationships were not statistically significant. This was attributed to the heterogeneity of the properties of sorbents. Nevertheless, in relative terms, the intraparticle diffusion rate, sorption reaction rate and enthalpy of sorption had higher R2 values than the boundary layer diffusion rate suggesting that there was some relationship between the former set of parameters of mixtures and that of sorbents. The mixture, which contained 80% of zeolite and 20% of seaweed, showed similar affinity for the sorption of Cu, Ni, Cd, Cr and Al, which was attributed to approximately similar sorption enthalpy of the metal ions. Therefore, it was concluded that the seaweed-zeolite mixture can be used to obtain the same affinity for various metals present in a multi metal system provided the metal ions have similar enthalpy during sorption by the mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of increasing threats to the sensitive marine ecosystem by toxic metals, this study investigated the metal build-up on impervious surfaces specific to commercial seaports. The knowledge generated in this study will contribute to managing toxic metal pollution of the marine ecosystem. The study found that inter-modal operations and main access roadway had the highest loads followed by container storage and vehicle marshalling sites, while the quay line and short term storage areas had the lowest. Additionally, it was found that Cr, Al, Pb, Cu and Zn were predominantly attached to solids, while significant amount of Cu, Pb and Zn were found as nutrient complexes. As such, treatment options based on solids retention can be effective for some metal species, while ineffective for other species. Furthermore, Cu and Zn are more likely to become bioavailable in seawater due to their strong association with nutrients. Mathematical models to replicate the metal build-up process were also developed using experimental design approach and partial least square regression. The models for Cr and Pb were found to be reliable, while those for Al, Zn and Cu were relatively less reliable, but could be employed for preliminary investigations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical treatments of kaolins to produce nanocrystalline or "X-ray amorphous", stable aluminosilicates with variable - but reproducible - types of micro- and meso-porosity have been developed. These materials show cation exchange capacities and surface area values significantly higher (ranging from 10x to 100x) than kaolin and show good acid resistance to pH~3.0. The combination of these properties offers strong potential for many new applications of kaolin-derived materials in large worldwide markets such as environmental remediation and catalysis. Kaolin amorphous derivative (KAD) is well-suited to removal of many toxic metals down to ppb range from acid mine drainage. Engineering development trials of the KAD manufacturing process and the utilisation of KAD in polluted waters such as acid mine drainage indicates that scale-up from bench-scale is not a barrier to market entry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zeolite-based technology can provide a cost effective solution for stormwater treatment for the removal of toxic heavy metals under increasing demand of safe water from alternative sources. This paper reviews the currently available knowledge relating to the effect of properties of zeolites such as pore size, surface area and Si:Al ratio and the physico-chemical conditions of the system such as pH, temperature, initial metal concentration and zeolite concentration on heavy metal removal performance. The primary aims are, to consolidate available knowledge and identify knowledge gaps. It was established that an in-depth understanding of operational issues such as, diffusion of metal ions into the zeolite pore structure, pore clogging, zeolite surface coverage by particulates in stormwater as well as the effect of pH on stormwater quality in the presence of zeolites is essential for developing a zeolite-based technology for the treatment of polluted stormwater. The optimum zeolite concentration to treat typical volumes of stormwater and initial heavy metal concentrations in stormwater should also be considered as operational issues in this regard. Additionally, leaching of aluminium and sodium ions from the zeolite structure to solution were identified as key issues requiring further research in the effort to develop cost effective solutions for the removal of heavy metals from stormwater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stormwater is a potential and readily available alternative source for potable water in urban areas. However, its direct use is severely constrained by the presence of toxic pollutants, such as heavy metals (HMs). The presence of HMs in stormwater is of concern because of their chronic toxicity and persistent nature. In addition to human health impacts, metals can contribute to adverse ecosystem health impact on receiving waters. Therefore, the ability to predict the levels of HMs in stormwater is crucial for monitoring stormwater quality and for the design of effective treatment systems. Unfortunately, the current laboratory methods for determining HM concentrations are resource intensive and time consuming. In this paper, applications of multivariate data analysis techniques are presented to identify potential surrogate parameters which can be used to determine HM concentrations in stormwater. Accordingly, partial least squares was applied to identify a suite of physicochemical parameters which can serve as indicators of HMs. Datasets having varied characteristics, such as land use and particle size distribution of solids, were analyzed to validate the efficacy of the influencing parameters. Iron, manganese, total organic carbon, and inorganic carbon were identified as the predominant parameters that correlate with the HM concentrations. The practical extension of the study outcomes to urban stormwater management is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research project developed a quantitative approach to assess the risk to human health from heavy metals and polycyclic aromatic hydrocarbons in urban stormwater based on traffic and land use factors. The research outcomes are expected to strengthen the scientifically robust management and reuse of urban stormwater. The innovative methodology developed can be applied to evaluate human health risk in relation to toxic chemical pollutants in urban stormwater runoff and for the development of effective risk mitigation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (<150µm) were considered to represent the maximum and minimum risk levels, respectively. The study outcomes confirmed that Cr, Mn and Pb pose the highest risks, although these elements are generally present in low concentrations. The study also found that even though the presence of a single heavy metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past two decades and in particular the past five years, numerous sandwich-type rare earth complexes containing naphthalocyanine ligands have been synthesized. The more extended delocalized π-electron system of naphthalocyanine in comparison with phthalocyanine generates unique physical, spectroscopic, electrochemical and photoelectrochemical properties which have aroused significant research interest in these compounds. This review summarizes recent progress in research on this important class of molecular materials and overviews the current status of the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in air and have been implicated as carcinogenic materials. Therefore, literature is replete with studies that are focused on their occurrence and profiles in indoor and outdoor air samples. However, because the relative potency of individual PAHs vary widely, health risks associated with the presence of PAHs in a particular environment cannot be extrapolated directly from the concentrations of individual PAHs in that environment. In addition, database on the potency of PAH mixtures is currently limited. In this paper, we have utilized multi-criteria decision making methods (MCDMs) to simultaneously correlate PAH-related health risk in some microenvironments to the concentration levels, ethoxyresorufin-O-deethylase (EROD) activity induction equivalency factors and toxic equivalency factors (TEFs) of PAHs found in those microenvironments. The results showed that the relative risk associated with PAHs in different air samples depends on the index used. Nevertheless, this approach offers a promising tool that could help identify microenvironments of concern and assist the prioritisation of control strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanate nanofibers with two formulas, Na2Ti3O7 and Na1.5H0.5Ti3O7, respectively, exhibit ideal properties for removal of radioactive and heavy metal ions in wastewater, such as Sr2+ , Ba2+ (as substitute of 226Ra2+), and Pb2+ ions. These nanofibers can be fabricated readily by a reaction between titania and caustic soda and have structures in which TiO6 octahedra join each other to form layers with negative charges; the sodium cations exist within the interlayer regions and are exchangeable. They can selectively adsorb the bivalent radioactive ions and heavy metal ions from water through ion exchange process. More importantly, such sorption finally induces considerable deformation of the layer structure, resulting in permanent entrapment of the toxic bivalent cations in the fibers so that the toxic ions can be safely deposited. This study highlights that nanoparticles of inorganic ion exchangers with layered structure are potential materials for efficient removal of the toxic ions from contaminated water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to determine the prevalence of the toxic shock toxin gene (tst) and to enumerate the circulating strains of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in Australian isolates collected over two decades. The aim was to subtype these strains using the binary genes pvl, cna, sdrE, pUB110 and pT181. Isolates were assayed using real-time polymerase chain reaction (PCR) for mecA, nuc, 16 S rRNA, eight single-nucleotide polymorphisms (SNPs) and for five binary genes. Two realtime PCR assays were developed for tst. The 90 MRSA isolates belonged to CC239 (39 in 1989, 38 in 1996 and ten in 2003), CC1 (two in 2003) and CC22 (one in 2003). The majority of the 210 MSSA isolates belonged to CC1 (26), CC5 (24) and CC78 (23). Only 18 isolates were tst-positive and only 15 were pvl-positive. Nine MSSA isolates belonged to five binary types of ST93, including two pvlpositive types. The proportion of tst-positive and pvl-positive isolates was low and no significant increase was demonstrated. Dominant MSSA clonal complexes were similar to those seen elsewhere, with the exception of CC78. CC239 MRSA (AUS-2/3) was the predominant MRSA but decreased significantly in prevalence, while CC22 (EMRSA-15) and CC1 (WA-1) emerged. Genetically diverse ST93 MSSA predated the emergence of ST93- MRSA (the Queensland clone).