247 resultados para titanium implant materials
em Queensland University of Technology - ePrints Archive
Resumo:
Background: Implant surface micro-roughness and hydrophilicity are known to improve the osteogenic differentiation potential of osteoprogenitor cells. This study was aimed to determine whether topographically and chemically modified titanium implant surfaces stimulate an initial osteogenic response in osteoprogenitor cells, which leads to their improved osteogenesis. ----- ----- Methods: Statistical analysis of microarray gene expression profiling data available from studies (at 72 hours) on sand-blasted, large grit acid etched (SLA) titanium surfaces was performed. Subsequently, human osteoprogenitor cells were cultured on SLActive (hydrophilic SLA), SLA and polished titanium surfaces for 24 hours, 3 days and 7 days. The expression of BMP2, BMP6, BMP2K, SP1, ACVR1, FZD6, WNT5A, PDLIM7, ITGB1, ITGA2, OCN, OPN, ALP and RUNX2 were studied using qPCR. ----- ----- Results: Several functional clusters related to osteogenesis were highlighted when genes showing statistically significant differences (from microarray data at 72 hours) in expression on SLA surface (compared with control surface) were analysed using DAVID (online tool). This indicates that differentiation begins very early in response to modified titanium surfaces. At 24 hours, ACVR1 (BMP pathway), FZD6 (Wnt pathway) and SP1 (TGF-β pathway) were significantly up-regulated in cultures on the SLActive surface compared to the other surfaces. WNT5A and ITGB1 also showed higher expression on the modified surfaces. Gene expression patterns on Day 3 and Day 7 did not reveal any significant differences.----- ----- Conclusion: These results suggest that the initial molecular response of osteoprogenitor cells to modified titanium surfaces may be responsible for an improved osteogenic response via the BMP and Wnt signalling pathways.
Resumo:
Topographically and chemically modified titanium implants are recognized to have improved osteogenic properties; however, the molecular regulation of this process remains unknown. This study aimed to determine the microRNA profile and the potential regulation of osteogenic differentiation following early exposure of osteoprogenitor cells to sand-blasted, large-grit acid-etched (SLA) and hydrophilic SLA (modSLA) surfaces. Firstly, the osteogenic characteristics of the primary osteoprogenitor cells were confirmed using ALP activity and Alizarin Red S staining. The effect of smooth (SMO), SLA and modSLA surfaces on the TGF-β/BMP (BMP2, BMP6, ACVR1) and non-canonical WNT/Ca2+ (WNT5A, FZD6) pathways, as well as the integrins ITGB1 and ITGA2, was determined. It was revealed that the modified titanium surfaces could induce the activation of TGF-β/BMP and non-canonical WNT/Ca2+ signaling genes. The expression pattern of microRNAs (miRNAs) related to cell differentiation was evaluated. Statistical analysis of the differentially regulated miRNAs indicated that 35 and 32 miRNAs were down-regulated on the modSLA and SLA surfaces respectively, when compared with the smooth surface (SMO). Thirty-one miRNAs that were down-regulated were common to both modSLA and SLA. There were 10 miRNAs up-regulated on modSLA and nine on SLA surfaces, amongst which eight were the same as observed on modSLA. TargetScan predictions for the down-regulated miRNAs revealed genes of the TGF-β/BMP and non-canonical Ca2+ pathways as targets. This study demonstrated that modified titanium implant surfaces induce differential regulation of miRNAs, which potentially regulate the TGF-β/BMP and WNT/Ca2+ pathways during osteogenic differentiation on modified titanium implant surfaces.
Resumo:
This project aimed at understanding the molecular mechanisms involved in the superior integration of micro-roughened titanium implant surfaces with the surrounding bone, when compared with their smooth surfaces. It involved studying the role of microRNAs and cell signaling pathways in the molecular regulation of bone cells on topographically modified titanium dental implants. The findings suggest a highly regulated microRNA-mediated control of molecular mechanisms during the process of bone formation that may be responsible for the superior osseointegration properties on micro-roughened titanium implant surfaces and indicate the possibility of using microRNA modulators to enhance osseointegration in clinically demanding circumstances.
Resumo:
A paradigm shift has taken place in which bone implant materials has gone from being relatively inert to having immunomodulatory properties, indicating the importance of immune response when these materials interact with the host tissues. It has therefore become important to endow the implant materials with immunomodulatory properties favouring osteogenesis and osseointegration. Strontium, zinc and silicon are bioactive elements that have important roles in bone metabolism and that also elicit significant immune responses. In this study, Sr-, Zn- and Si-containing bioactive Sr2ZnSi2O7 (SZS) ceramic coatings on Ti–6Al–4V were successfully prepared by a plasma-spray coating method. The SZS coatings exhibited slow release of the bioactive ions with significantly higher bonding strength than hydroxyapatite (HA) coatings. SZS-coated Ti–6Al–4V elicited significant effects on the immune cells, inhibiting the release of pro-inflammatory cytokines and fibrosis-enhancing factors, while upregulating the expression of osteogenic factors of macrophages; moreover, it could also inhibit the osteoclastic activities. The RANKL/RANK pathway, which enhances osteoclastogenesis, was inhibited by the SZS coatings, whereas the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) was significantly enhanced by the SZS coatings/macrophages conditioned medium, probably via the activation of BMP2 pathway. SZS coatings are, therefore, a promising material for orthopaedic applications, and the strategy of manipulating the immune response by a combination of bioactive elements with controlled release has the potential to endow biomaterials with beneficial immunomodulatory properties.
Resumo:
One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.
Resumo:
Objectives Titanium implant surfaces with modified topographies have improved osteogenic properties in vivo. However, the molecular mechanisms remain obscure. This study explored the signaling pathways responsible for the pro-osteogenic properties of micro-roughened (SLA) and chemically/nanostructurally (modSLA) modified titanium surfaces on human alveolar bone-derived osteoprogenitor cells (BCs) in vitro. Materials and methods The activation of stem cell signaling pathways (TGFβ/BMP, Wnt, FGF, Hedgehog, Notch) was investigated following early exposure (24 and 72 h) of BCs to SLA and modSLA surfaces in the absence of osteogenic cell culture supplements. Results Key regulatory genes from the TGFβ/BMP (TGFBR2, BMPR2, BMPR1B, ACVR1B, SMAD1, SMAD5), Wnt (Wnt/β-catenin and Wnt/Ca2+) (FZD1, FZD3, FZD5, LRP5, NFATC1, NFATC2, NFATC4, PYGO2, LEF1) and Notch (NOTCH1, NOTCH2, NOTCH4, PSEN1, PSEN2, PSENEN) pathways were upregulated on the modified surfaces. These findings correlated with a higher expression of osteogenic markers bone sialoprotein (IBSP) and osteocalcin (BGLAP), and bone differentiation factors BMP2, BMP6, and GDF15, as observed on the modified surfaces. Conclusions These findings demonstrate that the activation of the pro-osteogenic cell signaling pathways by modSLA and SLA surfaces leads to enhanced osteogenic differentiation as evidenced after 7 and 14 days culture in osteogenic media and provides a mechanistic insight into the superior osseointegration on the modified surfaces observed in vivo.
Resumo:
Background Osteocytes, the most abundant cells in bone, havemultiple functions, including acting as mechanosensors and regulating mineralization. It is clear that osteocytes influence bone remodeling by controlling the differentiation and activity of osteoblasts and osteoclasts. Determining the relationship between titanium implants and osteocytes may therefore benefit our understanding of the process of osseointegration. Purpose The aim of this study was to visualize the ultrastructural relationship between osteocytes and the titanium implant surface following osseointegration in vivo. Materials and Methods Titanium implants were placed in the maxillary molar regions of eight female Sprague Dawley rats, 3 months old. The animals were sacrificed 8 weeks after implantation, and undecalcified tissue sections were prepared. Resin-cast samples were subsequently acid-etched with 37% phosphoric acid prior to examination using scanning electron microscopy. Results Compared with mature bone, where the osteocytes were arranged in an ordered fashion, the osteocytes appeared less organized in the newly formed bone around the titanium implant. Further, a layer of mineralization with few organic components was observed on the implant surface. This study shows for the first time that osteocytes and their dendrites are directly connected with the implant surface. Conclusions: This study shows the direct anchorage of osteocytes via dendritic processes to a titanium implant surface in vivo. This suggests an important regulatory role for osteocytes and their lacunar-canalicular network in maintaining long-term osseointegration.
Resumo:
Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket related discomfort leading to a significant decrease in quality of life.[1-14] Most of these concerns can be overcome with osseointegration, a direct skeletal fixation method where the prosthetic componentry are directly attached to the fixation, resulting in the redundancy of the traditional socket system. There are two stages of osseointegration; Stage one, a titanium implant is inserted into the marrow space of residual limb bone and Stage two, a titanium extension is attached to the fixture. This surgical procedure is currently blooming worldwide, particularly within Queensland. Whilst providing improvements in quality of life, this new method also has potential to minimise the cost required for an amputee to ambulate during daily living. Thus, the aim of this project was to compare the differences in mean cost of services, cost of componentry and labour hours when using osseointegration compared to traditional socket-based prostheses. Data were extracted from Queensland Artificial Limb Services (QALS) database to determine cost of services, type of services and labour hours required to maintain a prosthetic limb. Five trans-femoral amputee male participants (age 46.4±10.1 yrs; height 175.4±16.3 cm; mass 83.8±14.0 kg; time since second stage 22.0± 8.1 mths) met inclusion criteria which was patient had to be more than 12 months post stage two osseointegration procedure. The socket and osseointegration prosthesis variables examined were the mean hours of labour, mean cost of services and mean cost of prosthetic componentry. Statistical analyses were conducted using an ANOVA. The results identified that there were only significant differences in the number of labour hours (p = 0.005) and cost of services (p = 0.021) when comparing the socket and osseointegration prosthetic type. These results identified that the cost of componentry were comparable between the two methods.
Resumo:
Growth rods are commonly used for the treatment of scoliosis in the immature spine. Many variations have been proposed but breakage of implants is a common problem. Growth rod insertion commonly involves large exposures at initial insertion followed by multiple smaller procedures for lengthening. We present our early experiences using a percutaneous technique of insertion of a new titanium mobile bearing implant (Medtronic Inc). The implant allows some rotatory motion in the middle of the construct thus reducing construct stresses and thus possibly reducing rod breakage risk. Based on this small initial series with 12 months follow-up, percutaneous insertion of growth rods using the new implant is a safe and reliable technique although the infection rate in our sample was of note. This may be related to the titanium wear and inflammation seen in the soft tissues at time of operation and visualised on histology. No implants have required removal due to infection, and all infections were treated with debridement at next lengthening and suppressive antibiotics. Propionibacterium is one of the commonest infections seen with spinal implants and sometimes does not respond to simple antibiotic suppression. The technique allows preservation of the soft tissues until definitive fusion is needed and may lead to a decrease in hospital stay. The implant is low profile and seems to offer advantages over other systems on the market. Further follow up is needed to look at longer term outcomes with this new implant type.
Resumo:
Purpose: The purpose of this paper is to report the resistance of plasma-sprayed titanium dioxide (TiO2) nanostructured coatings in a corrosive environment.----- Design/methodology/approach: Weight loss studies are performed according to ASTM G31 specifications in 3.5?wt% NaCl. Electrochemical polarization resistance measurements are made according to ASTM G59-91 specifications. Corrosion resistance in a humid and corrosive environment is determined by exposing the samples in a salt spray chamber for 100?h. Microstructural studies are carried out using an atomic force microscope and scanning electron microscope.----- Findings: The nanostructured TiO2 coatings offer good resistance to corrosion, as shown by the results of immersion, electrochemical and salt spray studies. The corrosion resistance of the coating is dictated primarily by the geometry of splat lamellae, density of unmelted nanoparticles, magnitude of porosity and surface homogeneity.----- Practical implications: The TiO2 nanostructured coatings show promising potential for use as abrasion, wear-resistant and thermal barrier coatings for service in harsh environments.----- Originality/value: The paper relates the corrosion resistance of nanostructured TiO2 coatings to their structure and surface morphology.
Resumo:
The reconstruction of extended maxillary and mandibular defects with prefabricated free flaps is a two stage procedure, that allows immediate function with implant supported dentures. The appropriate delay between prefabrication and reconstruction depends on the interfacial strength of the bone–implant surface. The purpose of this animal study was to evaluate the removal torque of unloaded titanium implants in the fibula, the scapula and the iliac crest. Ninety implants with a sandblasted and acid-etched (SLA) surface were tested after healing periods of 3, 6, and 12 weeks, respectively. Removal torque values (RTV) were collected using a computerized counterclockwise torque driver. The bicortical anchored 8 mm implants in the fibula revealed values of 63.73 Ncm, 91.50 Ncm, and 101.83 Ncm at 3, 6, and 12 weeks, respectively. The monocortical anchorage in the iliac crest showed values of 71.40 Ncm, 63.14 Ncm, and 61.59 Ncm with 12 mm implants at the corresponding times. The monocortical anchorage in the scapula demonstrated mean RTV of 62.28 Ncm, 97.63 Ncm, and 99.7 Ncm with 12 mm implants at 3, 6, and 12 weeks, respectively. The study showed an increase of removal torque with increasing healing time. The interfacial strength for bicortical anchored 8 mm implants in the fibula was comparable to monocortical anchored 12 mm implants in the iliac crest and the scapula at the corresponding times. The resistance to shear seemed to be determined by the type of anchorage (monocortical vs. bicortical) and the length of the implant with greater amount of bone–implant interface.
Resumo:
It is predicted that with increased life expectancy in the developed world, there will be a greater demand for synthetic materials to repair or regenerate lost, injured or diseased bone (Hench & Thompson 2010). There are still few synthetic materials having true bone inductivity, which limits their application for bone regeneration, especially in large-size bone defects. To solve this problem, growth factors, such as bone morphogenetic proteins (BMPs), have been incorporated into synthetic materials in order to stimulate de novo bone formation in the center of large-size bone defects. The greatest obstacle with this approach is that the rapid diffusion of the protein from the carrier material, leading to a precipitous loss of bioactivity; the result is often insufficient local induction or failure of bone regeneration (Wei et al. 2007). It is critical that the protein is loaded in the carrier material in conditions which maintains its bioactivity (van de Manakker et al. 2009). For this reason, the efficient loading and controlled release of a protein from a synthetic material has remained a significant challenge. The use of microspheres as protein/drug carriers has received considerable attention in recent years (Lee et al. 2010; Pareta & Edirisinghe 2006; Wu & Zreiqat 2010). Compared to macroporous block scaffolds, the chief advantage of microspheres is their superior protein-delivery properties and ability to fill bone defects with irregular and complex shapes and sizes. Upon implantation, the microspheres are easily conformed to the irregular implant site, and the interstices between the particles provide space for both tissue and vascular ingrowth, which are important for effective and functional bone regeneration (Hsu et al. 1999). Alginates are natural polysaccharides and their production does not have the implicit risk of contamination with allo or xeno-proteins or viruses (Xie et al. 2010). Because alginate is generally cytocompatible, it has been used extensively in medicine, including cell therapy and tissue engineering applications (Tampieri et al. 2005; Xie et al. 2010; Xu et al. 2007). Calcium cross-linked alginate hydrogel is considered a promising material as a delivery matrix for drugs and proteins, since its gel microspheres form readily in aqueous solutions at room temperature, eliminating the need for harsh organic solvents, thereby maintaining the bioactivity of proteins in the process of loading into the microspheres (Jay & Saltzman 2009; Kikuchi et al. 1999). In addition, calcium cross-linked alginate hydrogel is degradable under physiological conditions (Kibat PG et al. 1990; Park K et al. 1993), which makes alginate stand out as an attractive candidate material for the protein carrier and bone regeneration (Hosoya et al. 2004; Matsuno et al. 2008; Turco et al. 2009). However, the major disadvantages of alginate microspheres is their low loading efficiency and also rapid release of proteins due to the mesh-like networks of the gel (Halder et al. 2005). Previous studies have shown that a core-shell structure in drug/protein carriers can overcome the issues of limited loading efficiencies and rapid release of drug or protein (Chang et al. 2010; Molvinger et al. 2004; Soppimath et al. 2007). We therefore hypothesized that introducing a core-shell structure into the alginate microspheres could solve the shortcomings of the pure alginate. Calcium silicate (CS) has been tested as a biodegradable biomaterial for bone tissue regeneration. CS is capable of inducing bone-like apatite formation in simulated body fluid (SBF) and its apatite-formation rate in SBF is faster than that of Bioglass® and A-W glass-ceramics (De Aza et al. 2000; Siriphannon et al. 2002). Titanium alloys plasma-spray coated with CS have excellent in vivo bioactivity (Xue et al. 2005) and porous CS scaffolds have enhanced in vivo bone formation ability compared to porous β-tricalcium phosphate ceramics (Xu et al. 2008). In light of the many advantages of this material, we decided to prepare CS/alginate composite microspheres by combining a CS shell with an alginate core to improve their protein delivery and mineralization for potential protein delivery and bone repair applications