75 resultados para timber sleepers
em Queensland University of Technology - ePrints Archive
Resumo:
There has been a worldwide trend to increase axle loads and train speeds. This means that railway track degradation will be accelerated, and track maintenance costs will be increased significantly. There is a need to investigate the consequences of increasing traffic load. The aim of the research is to develop a model for the analysis of physical degradation of railway tracks in response to changes in traffic parameters, especially increased axle loads and train speeds. This research has developed an integrated track degradation model (ITDM) by integrating several models into a comprehensive framework. Mechanistic relationships for track degradation hav~ ?een used wherever possible in each of the models contained in ITDM. This overcc:mes the deficiency of the traditional statistical track models which rely heavily on historical degradation data, which is generally not available in many railway systems. In addition statistical models lack the flexibility of incorporating future changes in traffic patterns or maintenance practices. The research starts with reviewing railway track related studies both in Australia and overseas to develop a comprehensive understanding of track performance under various traffic conditions. Existing railway related models are then examined for their suitability for track degradation analysis for Australian situations. The ITDM model is subsequently developed by modifying suitable existing models, and developing new models where necessary. The ITDM model contains four interrelated submodels for rails, sleepers, ballast and subgrade, and track modulus. The rail submodel is for rail wear analysis and is developed from a theoretical concept. The sleeper submodel is for timber sleepers damage prediction. The submodel is developed by modifying and extending an existing model developed elsewhere. The submodel has also incorporated an analysis for the likelihood of concrete sleeper cracking. The ballast and subgrade submodel is evolved from a concept developed in the USA. Substantial modifications and improvements have been made. The track modulus submodel is developed from a conceptual method. Corrections for more global track conditions have been made. The integration of these submodels into one comprehensive package has enabled the interaction between individual track components to be taken into account. This is done by calculating wheel load distribution with time and updating track conditions periodically in the process of track degradation simulation. A Windows-based computer program ~ssociated with ITDM has also been developed. The program enables the user to carry out analysis of degradation of individual track components and to investigate the inter relationships between these track components and their deterioration. The successful implementation of this research has provided essential information for prediction of increased maintenance as a consequence of railway trackdegradation. The model, having been presented at various conferences and seminars, has attracted wide interest. It is anticipated that the model will be put into practical use among Australian railways, enabling track maintenance planning to be optimized and potentially saving Australian railway systems millions of dollars in operating costs.
Introducing a new limit states design concept to railway concrete sleepers: An Australian experience
Resumo:
Over 50 years, a large number of research and development projects with respect to the use of cementitious and concrete materials for manufacturing railway sleepers have been significantly progressed in Australia, Europe, and Japan (Wang, 1996; Murray and Cai, 1998; Wakui and Okuda, 1999; Esveld, 2001; Freudenstein and Haban, 2006; Remennikov and Kaewunruen, 2008). Traditional sleeper materials are timber, steel, and concrete. Cost-efficiency, superior durability, and improved track stability are the main factors toward significant adoption of concrete materials for railway sleepers. The sleepers in a track system, as shown in Figure 1, are subjected to harsh and aggressive external forces and natural environments across a distance. Many systemic problems and technical issues associated with concrete sleepers have been tackled over decades. These include pre-mature failures of sleepers, concrete cancer or ettringite, abrasion of railseats and soffits, impact damages by rail machinery, bond-slip damage, longitudinal and lateral instability of track system, dimensional instability of sleepers, nuisance noise and vibration, and so on (Pfeil, 1997; Gustavson, 2002; Kaewunruen and Remennikov, 2008a,b, 2013). These issues are, however, becoming an emerging risk for many countries (in North and South Americas, Asia, and the Middle East) that have recently installed large volumes of concrete sleepers in their railway networks (Federal Railroad Administration, 2013). As a result, it is vital to researchers and practitioners to critically review and learn from previous experience and lessons around the world.
Resumo:
This article examines the need for a marketing approach to support the expansion of trade in Australian forest Products. Opportunities available for trade in hoop pine ( Araucaria cunninghamii), a Queensland species of timber, are examined. Markets within China and Japan are found to have substantial potential end product uses for the plantation timber.
Resumo:
Although timber plantations and forests are classified as forms of agricultural production, the ownership of this land classification is not limited to rural producers. Timber plantations and forests are now regarded as a long-term investment with both institutional and absentee owners. While the NCREIF property indices have been the benchmarks for the measurement of the performance of the commercial property market in the UK, for many years the IPD timberland index has recently emerged as the U.K. forest and timberland performance indicator. The IPD Forest index incorporates 126 properties over five regions in the U.K. This paper will utilise the IPD Forestry Index to examine the performance of U.K. timber plantations and forests over the period 1981-2004. In particular, issues to be critically assessed include plantation and forest performance analysis, comparative investment analysis, and the role of plantations and forests in investment portfolios, the risk reduction and portfolio benefits of plantations and forests in mixed-asset portfolios and the strategic investment significance of U.K. timberlands.
Resumo:
Although timber plantations and forests are classified as forms of agricultural production, the ownership of this land classification is not limited to rural producers. Timber plantations and forests are now regarded as a long-term investment with both institutional and absentee owners. While the NCREIF property indices have been the benchmarks for the measurement of the performance of the commercial property market in the UK, for many years the IPD timberland index has recently emerged as the U.K. forest and timberland performance indicator. The IPD Forest index incorporates 126 properties over five regions in the U.K. This paper will utilise the IPD Forestry Index to examine the performance of U.K. timber plantations and forests over the period 1981-2004. In particular, issues to be critically assessed include plantation and forest performance analysis, comparative investment analysis, and the role of plantations and forests in investment portfolios, the risk reduction and portfolio benefits of plantations and forests in mixed-asset portfolios and the strategic investment significance of U.K. timberlands.
Resumo:
The paper explores the way in which the life of concrete sleepers can be dramatically affected by two important factors, namely impact forces and fatigue cycles. Drawing on the very limited experimental and field data currently available about these two factors, the paper describes detailed simulations of sleepers in a heavy haul track in Queensland Australia over a period of 100 years. The simulation uses real wheel/rail impact force records from that track, together with data on static bending tests of similar sleepers and preliminary information on their impact vs static strength. The simulations suggest that despite successful performance over many decades, large unplanned replacement costs could be imminent, especially considering the increasingly demanding operational conditions sleepers have sustained over their life. The paper also discusses the key factors track owners need to consider in attempting to plan for these developments.
Resumo:
Due to an ever increasing demand for more frequent and higher volume of train service, the physical conditions of tracks in modem railways are deteriorating more quickly when compared to tracks built decades ago. There are incidences in both the UK and Hong Kong indicating there are needs for a more stringent checks on the rail conditions using suitable and effective non-invasive and nondestructive condition monitoring system.
Resumo:
This paper presents an explanation of why the reuse of building components after demolition or deconstruction is critical to the future of the construction industry. An examination of the historical cause and response to climate change sets the scene as to why governance is becoming increasingly focused on the built environment as a mechanism to controlling waste generation associated with the process of demolition, construction and operation. Through an annotated description to the evolving design and construction methodology of a range of timber dwellings (typically 'Queenslanders' during the eras of 1880-1900, 1900-1920 & 1920-1940) the paper offers an evaluation to the variety of materials, which can be used advantageously by those wishing to 'regenerate' a Queenslander. This analysis of 'regeneration' details the constraints when considering relocation and/ or reuse by adaption including deconstruction of building components against the legislative framework requirements of the Queensland Building Act 1975 and the Queensland Sustainable Planning Act 2009, with a specific examination to those of the Building Codes of Australia. The paper concludes with a discussion of these constraints, their impacts on 'regeneration' and the need for further research to seek greater understanding of the practicalities and drivers of relocation, adaptive and building components suitability for reuse after deconstruction.
Resumo:
Wheel-rail interaction is one of the most important research topics in railway engineering. It includes track vibration, track impact response and safety of the track. Track structure failures caused by impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. The wheel-rail impact forces occur because of imperfections on the wheels or rails such as wheel flats, irregular wheel profile, rail corrugation and differences in the height of rails connected at a welded joint. In this paper, a finite element model for the wheel flat study is developed by use of the FEA software package ANSYS. The effect of the wheel flat to impact force on sleepers is investigated. It has found that the wheel flat significantly increases impact forces and maximum Von Mises stress, and also delays the peak position of dynamic variation for impact forces on both rail and sleeper.
Resumo:
The railway industry has been slow to adopt limit states principles in the structural design of concrete sleepers for its tracks, despite the global take up of this form of design for almost every other type of structural element. Concrete sleeper design is still based on limiting stresses but is widely perceived by track engineers to lead to untapped reserves of strength in the sleepers. Limit design is a more rational philosophy, especially where it is based on the ultimate dynamic capacity of the concrete sleepers. The paper describes the development of equations and factors for a limit design methodology for concrete sleepers in flexure using a probabilistic evaluation of sleeper loading. The new method will also permit a cogent, defensible means of establishing the true capacity of the billions of concrete sleepers that are currently in-track around the world, leading to better utilisation of track infrastructure. The paper demonstrates how significant cost savings may be achieved by track owners.