189 resultados para substrate noise coupling
em Queensland University of Technology - ePrints Archive
Resumo:
In this paper, we investigate theoretically and numerically the efficiency of energy coupling from a plasmon generated by a grating coupler at one of the interfaces of a metal wedge into the plasmonic eigenmode (i.e., symmetric or quasisymmetric plasmon) experiencing nanofocusing in the wedge. Thus the energy efficiency of energy coupling into metallic nanofocusing structure is analyzed. Two different nanofocusing structures with the metal wedge surrounded by a uniform dielectric (symmetric structure) and with the metal wedge enclosed between a substrate and a cladding with different dielectricpermittivities (asymmetric structure) are considered by means of the geometrical optics (adiabatic) approximation. It is demonstrated that the efficiency of the energy coupling from the plasmon generated by the grating into the symmetric or quasisymmetric plasmon experiencing nanofocusing may vary between ∼50% to ∼100%. In particular, even a very small difference (of ∼1%–2%) between the permittivities of the substrate and the cladding may result in a significant increase in the efficiency of the energy coupling (from ∼50% up to ∼100%) into the plasmon experiencing nanofocusing. Distinct beat patterns produced by the interference of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) plasmons are predicted and analyzed with significant oscillations of the magnetic and electric field amplitudes at both the metal wedge interfaces. Physical interpretations of the predicted effects are based upon the behavior, dispersion, and dissipation of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) filmplasmons in the nanofocusing metal wedge. The obtained results will be important for optimizing metallic nanofocusing structures and minimizing coupling and dissipative losses.
Resumo:
Palladium (Pd)-catalyzed cross-coupling reactions are among the most important methods in organic synthesis. We report the discovery of highly efficient and green photocatalytic processes by which cross-coupling reactions, including Sonogashira, Stille, Hiyama, Ullmann, and Buchwald–Hartwig reactions, can be driven with visible light at temperatures slightly above room temperature using alloy nanoparticles of gold and Pd on zirconium oxide, thus achieving high yields. The alloy nanoparticles absorb visible light, and their conduction electrons gain energy, which is available at the surface Pd sites. Results of the density functional theory calculations indicate that transfer of the light excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. When the light intensity was increased, a higher reaction rate was observed, because of the increased population of photoexcited electrons. The irradiation wavelength also has an important impact on the reaction rates. Ultraviolet irradiation can drive some reactions with the chlorobenzene substrate, while visible light irradiation failed to, and substantially improve the yields of the reactions with the bromobenzene substrate. The discovery reveals the possibility of using low-energy and -density sources such as sunlight to drive chemical transformations.
Resumo:
This paper presents an efficient low-complexity clipping noise compensation scheme for PAR reduced orthogonal frequency division multiple access (OFDMA) systems. Conventional clipping noise compensation schemes proposed for OFDM systems are decision directed schemes which use demodulated data symbols. Thus these schemes fail to deliver expected performance in OFDMA systems where multiple users share a single OFDM symbol and a specific user may only know his/her own modulation scheme. The proposed clipping noise estimation and compensation scheme does not require the knowledge of the demodulated symbols of the other users, making it very promising for OFDMA systems. It uses the equalized output and the reserved tones to reconstruct the signal by compensating the clipping noise. Simulation results show that the proposed scheme can significantly improve the system performance.
Resumo:
In urban environments road traffic volumes are increasing and the density of living is becoming higher. As a consequence the urban community is being exposed to increasing levels of road traffic noise. It is also evident that the noise reduction potential of within-the-road-reserve treatments such as noise barriers, mounding and pavement surfacing has been exhausted. This paper presents a strategy that involves the comparison of noise ameliorative treatments both within and outside the road reserve. The noise reduction resulting from the within-the-road-reserve component of treatments has been evaluated using a leading application of the CoRTN Model, developed by the UK Department of Transport 1988 [1], and the outside road reserve treatment has been evaluated in accordance with the Australian Standard 3671, Acoustics – Road traffic noise intrusion – Building sitting and construction [5]. The evaluation of noise treatments has been undertaken using a decision support tool (DST) currently being developed under the research program conducted at RMIT University and Department of Main Roads, Queensland. The case study has been based on data from a real project in Queensland, Australia. The research described here was carried out by the Australian Cooperative Research Centre for Construction Innovation [9], in collaboration with Department of Main Roads, Queensland, Department of Public Works, Queensland, Arup Pty. Ltd., Queensland University of technology and RMIT University.