167 resultados para stochastic linear programming
em Queensland University of Technology - ePrints Archive
Resumo:
We consider the problem of controlling a Markov decision process (MDP) with a large state space, so as to minimize average cost. Since it is intractable to compete with the optimal policy for large scale problems, we pursue the more modest goal of competing with a low-dimensional family of policies. We use the dual linear programming formulation of the MDP average cost problem, in which the variable is a stationary distribution over state-action pairs, and we consider a neighborhood of a low-dimensional subset of the set of stationary distributions (defined in terms of state-action features) as the comparison class. We propose a technique based on stochastic convex optimization and give bounds that show that the performance of our algorithm approaches the best achievable by any policy in the comparison class. Most importantly, this result depends on the size of the comparison class, but not on the size of the state space. Preliminary experiments show the effectiveness of the proposed algorithm in a queuing application.
Resumo:
We present an algorithm called Optimistic Linear Programming (OLP) for learning to optimize average reward in an irreducible but otherwise unknown Markov decision process (MDP). OLP uses its experience so far to estimate the MDP. It chooses actions by optimistically maximizing estimated future rewards over a set of next-state transition probabilities that are close to the estimates, a computation that corresponds to solving linear programs. We show that the total expected reward obtained by OLP up to time T is within C(P) log T of the reward obtained by the optimal policy, where C(P) is an explicit, MDP-dependent constant. OLP is closely related to an algorithm proposed by Burnetas and Katehakis with four key differences: OLP is simpler, it does not require knowledge of the supports of transition probabilities, the proof of the regret bound is simpler, but our regret bound is a constant factor larger than the regret of their algorithm. OLP is also similar in flavor to an algorithm recently proposed by Auer and Ortner. But OLP is simpler and its regret bound has a better dependence on the size of the MDP.
Resumo:
In this paper, we introduce the Stochastic Adams-Bashforth (SAB) and Stochastic Adams-Moulton (SAM) methods as an extension of the tau-leaping framework to past information. Using the theta-trapezoidal tau-leap method of weak order two as a starting procedure, we show that the k-step SAB method with k >= 3 is order three in the mean and correlation, while a predictor-corrector implementation of the SAM method is weak order three in the mean but only order one in the correlation. These convergence results have been derived analytically for linear problems and successfully tested numerically for both linear and non-linear systems. A series of additional examples have been implemented in order to demonstrate the efficacy of this approach.
Resumo:
In the paper, the flow-shop scheduling problem with parallel machines at each stage (machine center) is studied. For each job its release and due date as well as a processing time for its each operation are given. The scheduling criterion consists of three parts: the total weighted earliness, the total weighted tardiness and the total weighted waiting time. The criterion takes into account the costs of storing semi-manufactured products in the course of production and ready-made products as well as penalties for not meeting the deadlines stated in the conditions of the contract with customer. To solve the problem, three constructive algorithms and three metaheuristics (based one Tabu Search and Simulated Annealing techniques) are developed and experimentally analyzed. All the proposed algorithms operate on the notion of so-called operation processing order, i.e. the order of operations on each machine. We show that the problem of schedule construction on the base of a given operation processing order can be reduced to the linear programming task. We also propose some approximation algorithm for schedule construction and show the conditions of its optimality.
Resumo:
Operations management is an area concerned with the production of goods and services ensuring that business operations are efficient in utilizing resource and effective to meet customer requirements. It deals with the design and management of products, processes, services and supply chains and considers the acquisition, development, and effective and efficient utilization of resources. Unlike other engineering subjects, content of these units could be very wide and vast. It is therefore necessary to cover the content that is most related to the contemporary industries. It is also necessary to understand what engineering management skills are critical for engineers working in the contemporary organisations. Most of the operations management books contain traditional Operations Management techniques. For example ‘inventory management’ is an important topic in operations management. All OM books deal with effective method of inventory management. However, new trend in OM is Just in time (JIT) delivery or minimization of inventory. It is therefore important to decide whether to emphasise on keeping inventory (as suggested by most books) or minimization of inventory. Similarly, for OM decisions like forecasting, optimization and linear programming most organisations now a day’s use software. Now it is important for us to determine whether some of these software need to be introduced in tutorial/ lab classes. If so, what software? It is established in the Teaching and Learning literature that there must be a strong alignment between unit objectives, assessment and learning activities to engage students in learning. Literature also established that engaging students is vital for learning. However, engineering units (more specifically Operations management) is quite different from other majors. Only alignment between objectives, assessment and learning activities cannot guarantee student engagement. Unit content must be practical oriented and skills to be developed should be those demanded by the industry. Present active learning research, using a multi-method research approach, redesigned the operations management content based on latest developments in Engineering Management area and the necessity of Australian industries. The redesigned unit has significantly helped better student engagement and better learning. It was found that students are engaged in the learning if they find the contents are helpful in developing skills that are necessary in their practical life.
Resumo:
Traffic safety in rural highways can be considered as a constant source of concern in many countries. Nowadays, transportation professionals widely use Intelligent Transportation Systems (ITS) to address safety issues. However, compared to metropolitan applications, the rural highway (non-urban) ITS applications are still not well defined. This paper provides a comprehensive review on the existing ITS safety solutions for rural highways. This research is mainly focused on the infrastructure-based control and surveillance ITS technology, such as Crash Prevention and Safety, Road Weather Management and other applications, that is directly related to the reduction of frequency and severity of accidents. The main outcome of this research is the development of a ‘ITS control and surveillance device locating model’ to achieve the maximum safety benefit for rural highways. Using cost and benefits databases of ITS, an integer linear programming method is utilized as an optimization technique to choose the most suitable set of ITS devices. Finally, computational analysis is performed on an existing highway in Iran, to validate the effectiveness of the proposed locating model.
Resumo:
Designing practical rules for controlling invasive species is a challenging task for managers, particularly when species are long-lived, have complex life cycles and high dispersal capacities. Previous findings derived from plant matrix population analyses suggest that effective control of long-lived invaders may be achieved by focusing on killing adult plants. However, the cost-effectiveness of managing different life stages has not been evaluated. We illustrate the benefits of integrating matrix population models with decision theory to undertake this evaluation, using empirical data from the largest infestation of mesquite (Leguminosae: Prosopis spp) within Australia. We include in our model the mesquite life cycle, different dispersal rates and control actions that target individuals at different life stages with varying costs, depending on the intensity of control effort. We then use stochastic dynamic programming to derive cost-effective control strategies that minimize the cost of controlling the core infestation locally below a density threshold and the future cost of control arising from infestation of adjacent areas via seed dispersal. Through sensitivity analysis, we show that four robust management rules guide the allocation of resources between mesquite life stages for this infestation: (i) When there is no seed dispersal, no action is required until density of adults exceeds the control threshold and then only control of adults is needed; (ii) when there is seed dispersal, control strategy is dependent on knowledge of the density of adults and large juveniles (LJ) and broad categories of dispersal rates only; (iii) if density of adults is higher than density of LJ, controlling adults is most cost-effective; (iv) alternatively, if density of LJ is equal or higher than density of adults, management efforts should be spread between adults, large and to a lesser extent small juveniles, but never saplings. Synthesis and applications.In this study, we show that simple rules can be found for managing invasive plants with complex life cycles and high dispersal rates when population models are combined with decision theory. In the case of our mesquite population, focussing effort on controlling adults is not always the most cost-effective way to meet our management objective.
Resumo:
Mounting scientific evidence suggests newly imposed disturbance and/or alterations to existing disturbances facilitate invasion. Several empirical studies have explored the role of disturbance in invasion, but little work has been done to fit current understanding into a format useful for practical control efforts. We are working towards addressing this shortcoming by developing a metapopulation model couched in a decision theory framework. This approach has allowed us to investigate how incorporating the negative effects of disturbance on native vegetation into decision-making can change optimal control measures. In this paper, we present some preliminary results.
Resumo:
The purpose of this paper is to describe a new decomposition construction for perfect secret sharing schemes with graph access structures. The previous decomposition construction proposed by Stinson is a recursive method that uses small secret sharing schemes as building blocks in the construction of larger schemes. When the Stinson method is applied to the graph access structures, the number of such “small” schemes is typically exponential in the number of the participants, resulting in an exponential algorithm. Our method has the same flavor as the Stinson decomposition construction; however, the linear programming problem involved in the construction is formulated in such a way that the number of “small” schemes is polynomial in the size of the participants, which in turn gives rise to a polynomial time construction. We also show that if we apply the Stinson construction to the “small” schemes arising from our new construction, both have the same information rate.
Resumo:
With the recent development of advanced metering infrastructure, real-time pricing (RTP) scheme is anticipated to be introduced in future retail electricity market. This paper proposes an algorithm for a home energy management scheduler (HEMS) to reduce the cost of energy consumption using RTP. The proposed algorithm works in three subsequent phases namely real-time monitoring (RTM), stochastic scheduling (STS) and real-time control (RTC). In RTM phase, characteristics of available controllable appliances are monitored in real-time and stored in HEMS. In STS phase, HEMS computes an optimal policy using stochastic dynamic programming (SDP) to select a set of appliances to be controlled with an objective of the total cost of energy consumption in a house. Finally, in RTC phase, HEMS initiates the control of the selected appliances. The proposed HEMS is unique as it intrinsically considers uncertainties in RTP and power consumption pattern of various appliances. In RTM phase, appliances are categorized according to their characteristics to ease the control process, thereby minimizing the number of control commands issued by HEMS. Simulation results validate the proposed method for HEMS.
Resumo:
In the past few years, there has been a steady increase in the attention, importance and focus of green initiatives related to data centers. While various energy aware measures have been developed for data centers, the requirement of improving the performance efficiency of application assignment at the same time has yet to be fulfilled. For instance, many energy aware measures applied to data centers maintain a trade-off between energy consumption and Quality of Service (QoS). To address this problem, this paper presents a novel concept of profiling to facilitate offline optimization for a deterministic application assignment to virtual machines. Then, a profile-based model is established for obtaining near-optimal allocations of applications to virtual machines with consideration of three major objectives: energy cost, CPU utilization efficiency and application completion time. From this model, a profile-based and scalable matching algorithm is developed to solve the profile-based model. The assignment efficiency of our algorithm is then compared with that of the Hungarian algorithm, which does not scale well though giving the optimal solution.
Resumo:
Circular shortest paths represent a powerful methodology for image segmentation. The circularity condition ensures that the contour found by the algorithm is closed, a natural requirement for regular objects. Several implementations have been proposed in the past that either promise closure with high probability or ensure closure strictly, but with a mild computational efficiency handicap. Circularity can be viewed as a priori information that helps recover the correct object contour. Our "observation" is that circularity is only one among many possible constraints that can be imposed on shortest paths to guide them to a desirable solution. In this contribution, we illustrate this opportunity under a volume constraint but the concept is generally applicable. We also describe several adornments to the circular shortest path algorithm that proved useful in applications. © 2011 IEEE.