159 resultados para stabi-lity of flows
em Queensland University of Technology - ePrints Archive
Resumo:
This thesis explores a way to inform the architectural design process for contemporary workplace environments. It reports on both theoretical and practical outcomes through an exclusively Australian case study of a network enterprise comprised of collaborative, yet independent business entities. The internet revolution, substantial economic and cultural shifts, and an increased emphasis on lifestyle considerations have prompted a radical re-ordering of organisational relationships and the associated structures, processes, and places of doing business. The social milieu of the information age and the knowledge economy is characterised by an almost instantaneous flow of information and capital. This has culminated in a phenomenon termed by Manuel Castells as the network society, where physical locations are joined together by continuous communication and virtual connectivity. A new spatial logic encompassing redefined concepts of space and distance, and requiring a comprehensive shift in the approach to designing workplace environments for today’s adaptive, collaborative organisations in a dynamic business world, provides the backdrop for this research. Within the duality of space and an augmentation of the traditional notions of place, organisational and institutional structures pose new challenges for the design professions. The literature revealed that there has always been a mono-organisational focus in relation to workplace design strategies. The phenomenon of inter-organisational collaboration has enabled the identification of a gap in the knowledge relative to workplace design. This new context generated the formulation of a unique research construct, the NetWorkPlace™©, which captures the complexity of contemporary employment structures embracing both physical and virtual work environments and practices, and provided the basis for investigating the factors that are shaping and defining interactions within and across networked organisational settings. The methodological orientation and the methods employed follow a qualitative approach and an abductively driven strategy comprising two distinct components, a cross-sectional study of the whole of the network and a longitudinal study, focusing on a single discrete workplace site. The complexity of the context encountered dictated that a multi-dimensional investigative framework was required to be devised. The adoption of a pluralist ontology and the reconfiguration of approaches from traditional paradigms into a collaborative, trans-disciplinary, multi-method epistemology provided an explicit and replicatable method of investigation. The identification and introduction of the NetWorkPlace™© phenomenon, by necessity, spans a number of traditional disciplinary boundaries. Results confirm that in this context, architectural research, and by extension architectural practice, must engage with what other disciplines have to offer. The research concludes that no single disciplinary approach to either research or practice in this area of design can suffice. Pierre Bourdieau’s philosophy of ‘practice’ provides a framework within which the governance and technology structures, together with the mechanisms enabling the production of social order in this context, can be understood. This is achieved by applying the concepts of position and positioning to the corporate power dynamics, and integrating the conflict found to exist between enterprise standard and ferally conceived technology systems. By extending existing theory and conceptions of ‘place’ and the ‘person-environment relationship’, relevant understandings of the tensions created between Castells’ notions of the space of place and the space of flows are established. The trans-disciplinary approach adopted, and underpinned by a robust academic and practical framework, illustrates the potential for expanding the range and richness of understanding applicable to design in this context. The outcome informs workplace design by extending theoretical horizons, and by the development of a comprehensive investigative process comprising a suite of models and techniques for both architectural and interior design research and practice, collectively entitled the NetWorkPlace™© Application Framework. This work contributes to the body of knowledge within the design disciplines in substantive, theoretical, and methodological terms, whilst potentially also influencing future organisational network theories, management practices, and information and communication technology applications. The NetWorkPlace™© as reported in this thesis, constitutes a multi-dimensional concept having the capacity to deal with the fluidity and ambiguity characteristic of the network context, as both a topic of research and the way of going about it.
Resumo:
The Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF) is an industry lead initiative to enable cross company communication and comparisons of water management performance. The WAF consists of two models, the Input-Output Model that represents water interactions between an operation and its surrounding environment and the Operational Model that represents water interactions within an operation. Recently, MCA member companies have agreed to use the Input-Output Model to report on their external water interactions in Australian operations, with some adopting it globally. The next step will be to adopt the Operational Model. This will expand the functionality of the WAF from corporate reporting to allowing widespread identification of inefficiencies and to connect internal and external interactions. Implementing the WAF, particularly the Operational Model, is non-trivial. It can be particularly difficult for operations that are unfamiliar with the WAF definitions and methodology, lack information pertaining to flow volumes or contain unusual configurations. Therefore, there is a need to help industry with its implementation. This work presents a step-by-step guide to producing the Operational Model. It begins by describing a methodology for implementing the Operational Model by describing the identification of pertinent objects (stores, tasks and treatments), quantification of flows, aggregation of objects and production of reports. It then discusses how the Operational Model can represent a series of challenging scenarios and how it can be connected with Input-Output Model to improve water management.
Resumo:
Communicating the mining industry’s water use is fundamental to maintaining its social license to operate but the majority of corporate reporting schemes list indicators. The Minerals Council of Australia’s Water Accounting Framework was designed to assist the minerals industry obtain consistency in its accounting method and in the definitions of terms used in water reporting. The significance of this paper is that it shows that the framework has been designed to be sufficiently robust to describe any mining/mineral related operation. The Water Accounting Framework was applied across four operations over three countries producing four commodities. The advantages of the framework were then evident through the presentation of the reports. The contextual statement of the framework was able to explain contrasting reuse efficiencies. The Input-Output statements showed that evaporation was a significant loss for most of the operations in the study which highlights a weakness of reporting schemes that focus on discharge volumes. The framework method promotes data reconciliation which proved the presence of flows that two operations in the study had neglected to provide. Whilst there are many advantages of the framework, the major points are that the reporting statements of the framework, when presented together, can better enable the public to understand water interactions at a site-level and allows for valid comparisons between sites, regardless of locale and commodity. With mining being a global industry, these advantages are best realised if there was international adoption of the framework.
Resumo:
We report here a CFD model of highly swirling flow in a quarl burner using three versions of the k-epsilon model. Results for the recirculating zone, the bounding shear layer and the downstream flow are presented. We discuss, with suitable qualifications, how the model predictions can inform our understanding of this class of flows.
Resumo:
"This chapter discusses laminar and turbulent natural convection in rectangular cavities. Natural convection in rectangular two-dimensional cavities has become a standard problem in numerical heat transfer because of its relevance in understanding a number of problems in engineering. Current research identified a number of difficulties with regard to the numerical methods and the turbulence modeling for this class of flows. Obtaining numerical predictions at high Rayleigh numbers proved computationally expensive such that results beyond Ra ∼ 1014 are rarely reported. The chapter discusses a study in which it was found that turbulent computations in square cavities can't be extended beyond Ra ∼ O (1012) despite having developed a code that proved very efficient for the high Ra laminar regime. As the Rayleigh number increased, thin boundary layers began to form next to the vertical walls, and the central region became progressively more stagnant and highly stratified. Results obtained for the high Ra laminar regime were in good agreement with existing studies. Turbulence computations, although of a preliminary nature, indicated that a second moment closure model was capable of predicting the experimentally observed flow features."--Publisher Summary
Study of industrially relevant boundary layer and axisymmetric flows, including swirl and turbulence
Resumo:
Micropolar and RNG-based modelling of industrially relevant boundary layer and recirculating swirling flows is described. Both models contain a number of adjustable parameters and auxiliary conditions that must be either modelled or experimentally determined, and the effects of varying these on the resulting flow solutions is quantified. To these ends, the behaviour of the micropolar model for self-similar flow over a surface that is both stretching and transpiring is explored in depth. The simplified governing equations permit both analytic and numerical approaches to be adopted, and a number of closed form solutions (both exact and approximate) are obtained using perturbation and order of magnitude analyses. Results are compared with the corresponding Newtonian flow solution in order to highlight the differences between the micropolar and classical models, and significant new insights into the behaviour of the micropolar model are revealed for this flow. The behaviour of the RNG-bas based models for swirling flow with vortex breakdown zones is explored in depth via computational modelling of two experimental data sets and an idealised breakdown flow configuration. Meticulous modeling of upstream auxillary conditions is required to correctly assess the behavior of the models studied in this work. The novel concept of using the results to infer the role of turbulence in the onset and topology of the breakdown zone is employed.
Resumo:
Complex flow datasets are often difficult to represent in detail using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows (i.e., complex dynamics and time-dependent). In this paper, we review two popular texture-based techniques and their application to flow datasets sourced from real research projects. The texture-based techniques investigated were Line Integral Convolution (LIC), and Image-Based Flow Visualisation (IBFV). We evaluated these techniques and in this paper report on their visualisation effectiveness (when compared with traditional techniques), their ease of implementation, and their computational overhead.
Resumo:
Detailed representations of complex flow datasets are often difficult to generate using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows. We review two popular texture based techniques and their application to flow datasets sourced from active research projects. The techniques investigated were Line integral convolution (LIC) [1], and Image based flow visualisation (IBFV) [18]. We evaluated these and report on their effectiveness from a visualisation perspective. We also report on their ease of implementation and computational overheads.
Resumo:
This paper examines the paradoxical and ubiquitous nature of Butler’s heterosexual matrix, and opens it up to an alternative Deleuzian analysis. Drawing on stories and art works produced in a collective biography workshop on girls and sexuality this paper extends previous work on the subversion of the heterosexual matrix undertaken by Renold and Ringrose (2008). The paper moves, as they do, from a molar to a molecular analysis, but extends that work by re-thinking the girl/subject in terms of Deleuze and Guattari’s endlessly transforming multiplicities where “the self is only a threshold, a door, a becoming between two multiplicities” (Deleuze and Guattari, 1987: 249)
Resumo:
This paper describes a generalised linear mixed model (GLMM) approach for understanding spatial patterns of participation in population health screening, in the presence of multiple screening facilities. The models presented have dual focus, namely the prediction of expected patient flows from regions to services and relative rates of participation by region- service combination, with both outputs having meaningful implications for the monitoring of current service uptake and provision. The novelty of this paper lies with the former focus, and an approach for distributing expected participation by region based on proximity to services is proposed. The modelling of relative rates of participation is achieved through the combination of different random effects, as a means of assigning excess participation to different sources. The methodology is applied to participation data collected from a government-funded mammography program in Brisbane, Australia.
Resumo:
Mass flows on volcanic islands generated by volcanic lava dome collapse and by larger-volume flank collapse can be highly dangerous locally and may generate tsunamis that threaten a wider area. It is therefore important to understand their frequency, emplacement dynamics, and relationship to volcanic eruption cycles. The best record of mass flow on volcanic islands may be found offshore, where most material is deposited and where intervening hemipelagic sediment aids dating. Here we analyze what is arguably the most comprehensive sediment core data set collected offshore from a volcanic island. The cores are located southeast of Montserrat, on which the Soufriere Hills volcano has been erupting since 1995. The cores provide a record of mass flow events during the last 110 thousand years. Older mass flow deposits differ significantly from those generated by the repeated lava dome collapses observed since 1995. The oldest mass flow deposit originated through collapse of the basaltic South Soufriere Hills at 103-110 ka, some 20-30 ka after eruptions formed this volcanic center. A ∼1.8 km3 blocky debris avalanche deposit that extends from a chute in the island shelf records a particularly deep-seated failure. It likely formed from a collapse of almost equal amounts of volcanic edifice and coeval carbonate shelf, emplacing a mixed bioclastic-andesitic turbidite in a complex series of stages. This study illustrates how volcanic island growth and collapse involved extensive, large-volume submarine mass flows with highly variable composition. Runout turbidites indicate that mass flows are emplaced either in multiple stages or as single events.
Resumo:
Passenger flow studies in airport terminals have shown consistent statistical relationships between airport spatial layout and pedestrian movement, facilitating prediction of movement from terminal designs. However, these studies are done at an aggregate level and do not incorporate how individual passengers make decisions at a microscopic level. Therefore, they do not explain the formation of complex movement flows. In addition, existing models mostly focus on standard airport processing procedures such as immigration and security, but seldom consider discretionary activities of passengers, and thus are not able to truly describe the full range of passenger flows within airport terminals. As the route-choice decision-making of passengers involves many uncertain factors within the airport terminals, the mechanisms to fulfill the capacity of managing the route-choice have proven difficult to acquire and quantify. Could the study of cognitive factors of passengers (i.e. human mental preferences of deciding which on-airport facility to use) be useful to tackle these issues? Assuming the movement in virtual simulated environments can be analogous to movement in real environments, passenger behaviour dynamics can be similar to those generated in virtual experiments. Three levels of dynamics have been devised for motion control: the localised field, tactical level, and strategic level. A localised field refers to basic motion capabilities, such as walking speed, direction and avoidance of obstacles. The other two fields represent cognitive route-choice decision-making. This research views passenger flow problems via a "bottom-up approach", regarding individual passengers as independent intelligent agents who can behave autonomously and are able to interact with others and the ambient environment. In this regard, passenger flow formation becomes an emergent phenomenon of large numbers of passengers interacting with others. In the thesis, first, the passenger flow in airport terminals was investigated. Discretionary activities of passengers were integrated with standard processing procedures in the research. The localised field for passenger motion dynamics was constructed by a devised force-based model. Next, advanced traits of passengers (such as their desire to shop, their comfort with technology and their willingness to ask for assistance) were formulated to facilitate tactical route-choice decision-making. The traits consist of quantified measures of mental preferences of passengers when they travel through airport terminals. Each category of the traits indicates a decision which passengers may take. They were inferred through a Bayesian network model by analysing the probabilities based on currently available data. Route-choice decision-making was finalised by calculating corresponding utility results based on those probabilities observed. Three sorts of simulation outcomes were generated: namely, queuing length before checkpoints, average dwell time of passengers at service facilities, and instantaneous space utilisation. Queuing length reflects the number of passengers who are in a queue. Long queues no doubt cause significant delay in processing procedures. The dwell time of each passenger agent at the service facilities were recorded. The overall dwell time of passenger agents at typical facility areas were analysed so as to demonstrate portions of utilisation in the temporal aspect. For the spatial aspect, the number of passenger agents who were dwelling within specific terminal areas can be used to estimate service rates. All outcomes demonstrated specific results by typical simulated passenger flows. They directly reflect terminal capacity. The simulation results strongly suggest that integrating discretionary activities of passengers makes the passenger flows more intuitive, observing probabilities of mental preferences by inferring advanced traits make up an approach capable of carrying out tactical route-choice decision-making. On the whole, the research studied passenger flows in airport terminals by an agent-based model, which investigated individual characteristics of passengers and their impact on psychological route-choice decisions of passengers. Finally, intuitive passenger flows in airport terminals were able to be realised in simulation.
Resumo:
The study of international news flows has been a dominant topic of international communication research during the past 50 years. This paper critically reviews past approaches to the analysis of news flows and identifies the main strands of research in this field. In line with some previous critiques of the field, we argue that past research has for too long been influenced by dichotomous debates that failed to take account of the complexities of international news decisions. A new direction is needed in order for news flow research to provide better answers to the recurring questions. This new direction is not a break from past approaches but rather an integration of all different approaches, which would provide researchers with a more holistic framework for analyzing international news flows. This new approach calls for a combination of political, economic, geographic, historical, social and cultural factors, including perspectives from other disciplines, such as anthropology and linguistics.