70 resultados para spectrum attenuation
em Queensland University of Technology - ePrints Archive
Resumo:
The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus was first described in 1984. The assessment of osteoporosis by BUA has recently been recognized by Universities UK, within its EurekaUK book, as being one of the “100 discoveries and developments in UK Universities that have changed the world” over the past 50 years, covering the whole academic spectrum from the arts and humanities to science and technology. Indeed, BUA technique has been clinically validated and is utilized worldwide, with at least seven commercial systems providing calcaneal BUA measurement. However, a fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone is still lacking. This review aims to provide a science- and technology-orientated perspective on the application of BUA to the medical disease of osteoporosis.
Resumo:
The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland–Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.
Resumo:
The Raman spectra at 77 K of the hydroxyl stretching of kaolinite were obtained along the three axes perpendicular to the crystal faces. Raman bands were observed at 3616, 3658 and 3677 cm−1 together with a distinct band observed at 3691 cm−1 and a broad profile between 3695 and 3715 cm−1. The band at 3616 cm−1 is assigned to the inner hydroxyl. The bands at 3658 and 3677 cm−1 are attributed to the out-of-phase vibrations of the inner surface hydroxyls. The Raman spectra of the in-phase vibrations of the inner-surface hydroxyl-stretching region are described in terms of transverse and longitudinal optic splitting. The band at 3691 cm−1 is assigned to the transverse optic and the broad profile to the longitudinal optic mode. This splitting remained even at liquid nitrogen temperature. The transverse optic vibration may be curve resolved into two or three bands, which are attributed to different types of hydroxyl groups in the kaolinite.
Resumo:
Objectives: To report on the design, significance and potential impacts of the first documented human clinical trial assessing the anxiolytic and thymoleptic efficacy of an aqueous monoextract of Piper methysticum (kava). The significance of the qualitative element of our clinical trial is also explored. The Kava Anxiety Depression Spectrum Study (KADSS) is a 3-week placebocontrolled, double-blind, cross-over trial involving 60 adult participants (18—65) with elevated stable anxiety and varying levels of depressive symptoms. Aims: The aims of KADSS are: (1) to determine whether an aqueous standardised extract of kava is effective for the treatment of anxiety; (2) to assess the effects of kava on differing levels of depression; and (3) to explore participants’ experience of taking kava via qualitative research. The study also provides preliminary assessment of the safety of an aqueous extract of kava in humans. Conclusion: If results reveal that the aqueous kava preparation exerts significant anxiolytic effects and appears safe, potentially beneficial impacts may occur. Data supporting a safe and effective kava extract may encourage a re-introduction of kava to Europe, UK and Canada. This may provide a major socioeconomic benefit to Pacific Island nations, and to sufferers of anxiety disorders.
Resumo:
Rationale: Piper methysticum (Kava) has been withdrawn in European, British, and Canadian markets due to concerns over hepatotoxic reactions. The WHO recently recommended research into “aqueous” extracts of Kava. Objective: The objective of this study was to conduct the first documented human clinical trial assessing the anxiolytic and antidepressant efficacy of an aqueous extract of Kava. Design and participants: The Kava Anxiety Depression Spectrum Study was a 3-week placebo-controlled, double-blind crossover trial that recruited 60 adult participants with 1 month or more of elevated generalized anxiety. Five Kava tablets per day were prescribed containing 250 mg of kavalactones/day. Results: The aqueous extract of Kava reduced participants' Hamilton Anxiety Scale score in the first controlled phase by −9.9 (CI = 7.1, 12.7) vs. −0.8 (CI = −2.7, 4.3) for placebo and in the second controlled phase by −10.3 (CI = 5.8, 14.7) vs. +3.3 (CI = −6.8, 0.2). The pooled effect of Kava vs. placebo across phases was highly significant (p < 0.0001), with a substantial effect size (d = 2.24, η² [sub]p[sub] = 0.428). Pooled analyses also revealed highly significant relative reductions in Beck Anxiety Inventory and Montgomery–Asberg Depression Rating Scale scores. The aqueous extract was found to be safe, with no serious adverse effects and no clinical hepatotoxicity. Conclusions: The aqueous Kava preparation produced significant anxiolytic and antidepressant activity and raised no safety concerns at the dose and duration studied. Kava appears equally effective in cases where anxiety is accompanied by depression. This should encourage further study and consideration of globally reintroducing aqueous rootstock extracts of Kava for the management of anxiety.
Resumo:
Mosston & Ashworth‟s Spectrum of Teaching styles was first published in 1966 and is potentially the longest surviving model of teaching within the field of physical education. Its longevity and influence is surely testament to its value and influence. Many tools have also been developed through the years based on The Spectrum of Teaching Styles. In 2005 as part of a doctoral study, this tool was developed by the author, Dr Edwards and Dr Ashworth for researchers and teachers to identify which teaching styles were being utilised from The Spectrum when teaching physical education. It could also be utilised for self-assessment of the teaching styles and individual uses, or those who work with Physical Education Teacher Education courses. The development of this tool took approximately 4 months, numerous emails and meetings. This presentation will outline this process, along with the reasons why such a tool was developed and the differences between it and others like it.
Resumo:
Spectrum sensing is considered to be one of the most important tasks in cognitive radio. Many sensing detectors have been proposed in the literature, with the common assumption that the primary user is either fully present or completely absent within the window of observation. In reality, there are scenarios where the primary user signal only occupies a fraction of the observed window. This paper aims to analyse the effect of the primary user duty cycle on spectrum sensing performance through the analysis of a few common detectors. Simulations show that the probability of detection degrades severely with reduced duty cycle regardless of the detection method. Furthermore we show that reducing the duty cycle has a greater degradation on performance than lowering the signal strength.
Resumo:
In this paper we propose a new method for utilising phase information by complementing it with traditional magnitude-only spectral subtraction speech enhancement through Complex Spectrum Subtraction (CSS). The proposed approach has the following advantages over traditional magnitude-only spectral subtraction: (a) it introduces complementary information to the enhancement algorithm; (b) it reduces the total number of algorithmic parameters, and; (c) is designed for improving clean speech magnitude spectra and is therefore suitable for both automatic speech recognition (ASR) and speech perception applications. Oracle-based ASR experiments verify this approach, showing an average of 20% relative word accuracy improvements when accurate estimates of the phase spectrum are available. Based on sinusoidal analysis and assuming stationarity between observations (which is shown to be better approximated as the frame rate is increased), this paper also proposes a novel method for acquiring the phase information called Phase Estimation via Delay Projection (PEDEP). Further oracle ASR experiments validate the potential for the proposed PEDEP technique in ideal conditions. Realistic implementation of CSS with PEDEP shows performance comparable to state of the art spectral subtraction techniques in a range of 15-20 dB signal-to-noise ratio environments. These results clearly demonstrate the potential for using phase spectra in spectral subtractive enhancement applications, and at the same time highlight the need for deriving more accurate phase estimates in a wider range of noise conditions.
Resumo:
For several reasons, the Fourier phase domain is less favored than the magnitude domain in signal processing and modeling of speech. To correctly analyze the phase, several factors must be considered and compensated, including the effect of the step size, windowing function and other processing parameters. Building on a review of these factors, this paper investigates a spectral representation based on the Instantaneous Frequency Deviation, but in which the step size between processing frames is used in calculating phase changes, rather than the traditional single sample interval. Reflecting these longer intervals, the term delta-phase spectrum is used to distinguish this from instantaneous derivatives. Experiments show that mel-frequency cepstral coefficients features derived from the delta-phase spectrum (termed Mel-Frequency delta-phase features) can produce broadly similar performance to equivalent magnitude domain features for both voice activity detection and speaker recognition tasks. Further, it is shown that the fusion of the magnitude and phase representations yields performance benefits over either in isolation.
Resumo:
The single crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2 respectively, and the non-aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise of alternating layers of [Sb(OH)6]-1 octahedra and mixed [M(H2O)6]+2 / [Sb(OH)6]-1 octahedra. Mopungite comprises hydrogen bonded layers of [Sb(OH)6]-1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb-O symmetric stretch of the [Sb(OH)6]-1 octahedron, which occurs at approximately 620 cm-1. The Raman spectrum of mopungite showed many similarities to spectra of the di-octahedral minerals informing the view that the Sb octahedra gave rise to most of the Raman bands observed, particularly below 1200 cm-1. Assignments have been proposed based on the spectral comparison between the minerals, prior literature and density field theory calculations of the vibrational spectra of the free [Sb(OH)6]-1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6-31G(d) and lanl2dz for the Sb atom. The single crystal data spectra showed good mode separation, allowing the majority of the bands to be assigned a symmetry species of A or E.
Resumo:
Spectrum sensing optimisation techniques maximise the efficiency of spectrum sensing while satisfying a number of constraints. Many optimisation models consider the possibility of the primary user changing activity state during the secondary user's transmission period. However, most ignore the possibility of activity change during the sensing period. The observed primary user signal during sensing can exhibit a duty cycle which has been shown to severely degrade detection performance. This paper shows that (a) the probability of state change during sensing cannot be neglected and (b) the true detection performance obtained when incorporating the duty cycle of the primary user signal can deviate significantly from the results expected with the assumption of no such duty cycle.