119 resultados para small-world network
em Queensland University of Technology - ePrints Archive
Resumo:
The paper presents a detailed analysis on the collective dynamics and delayed state feedback control of a three-dimensional delayed small-world network. The trivial equilibrium of the model is first investigated, showing that the uncontrolled model exhibits complicated unbounded behavior. Then three control strategies, namely a position feedback control, a velocity feedback control, and a hybrid control combined velocity with acceleration feedback, are then introduced to stabilize this unstable system. It is shown in these three control schemes that only the hybrid control can easily stabilize the 3-D network system. And with properly chosen delay and gain in the delayed feedback path, the hybrid controlled model may have stable equilibrium, or periodic solutions resulting from the Hopf bifurcation, or complex stranger attractor from the period-doubling bifurcation. Moreover, the direction of Hopf bifurcation and stability of the bifurcation periodic solutions are analyzed. The results are further extended to any "d" dimensional network. It shows that to stabilize a "d" dimensional delayed small-world network, at least a "d – 1" order completed differential feedback is needed. This work provides a constructive suggestion for the high dimensional delayed systems.
Resumo:
A major challenge in neuroscience is finding which genes affect brain integrity, connectivity, and intellectual function. Discovering influential genes holds vast promise for neuroscience, but typical genome-wide searches assess approximately one million genetic variants one-by-one, leading to intractable false positive rates, even with vast samples of subjects. Even more intractable is the question of which genes interact and how they work together to affect brain connectivity. Here, we report a novel approach that discovers which genes contribute to brain wiring and fiber integrity at all pairs of points in a brain scan. We studied genetic correlations between thousands of points in human brain images from 472 twins and their nontwin siblings (mean age: 23.7 2.1 SD years; 193 male/279 female).Wecombined clustering with genome-wide scanning to find brain systems withcommongenetic determination.Wethen filtered the image in a new way to boost power to find causal genes. Using network analysis, we found a network of genes that affect brain wiring in healthy young adults. Our new strategy makes it computationally more tractable to discover genes that affect brain integrity. The gene network showed small-world and scale-free topologies, suggesting efficiency in genetic interactions and resilience to network disruption. Genetic variants at hubs of the network influence intellectual performance by modulating associations between performance intelligence quotient and the integrity of major white matter tracts, such as the callosal genu and splenium, cingulum, optic radiations, and the superior longitudinal fasciculus.
Resumo:
Dynamic Bayesian Networks (DBNs) provide a versatile platform for predicting and analysing the behaviour of complex systems. As such, they are well suited to the prediction of complex ecosystem population trajectories under anthropogenic disturbances such as the dredging of marine seagrass ecosystems. However, DBNs assume a homogeneous Markov chain whereas a key characteristics of complex ecosystems is the presence of feedback loops, path dependencies and regime changes whereby the behaviour of the system can vary based on past states. This paper develops a method based on the small world structure of complex systems networks to modularise a non-homogeneous DBN and enable the computation of posterior marginal probabilities given evidence in forwards inference. It also provides an approach for an approximate solution for backwards inference as convergence is not guaranteed for a path dependent system. When applied to the seagrass dredging problem, the incorporation of path dependency can implement conditional absorption and allows release from the zero state in line with environmental and ecological observations. As dredging has a marked global impact on seagrass and other marine ecosystems of high environmental and economic value, using such a complex systems model to develop practical ways to meet the needs of conservation and industry through enhancing resistance and/or recovery is of paramount importance.
Resumo:
The brain's functional network exhibits many features facilitating functional specialization, integration, and robustness to attack. Using graph theory to characterize brain networks, studies demonstrate their small-world, modular, and "rich-club" properties, with deviations reported in many common neuropathological conditions. Here we estimate the heritability of five widely used graph theoretical metrics (mean clustering coefficient (γ), modularity (Q), rich-club coefficient (ϕnorm), global efficiency (λ), small-worldness (σ)) over a range of connection densities (k=5-25%) in a large cohort of twins (N=592, 84 MZ and 89 DZ twin pairs, 246 single twins, age 23±2.5). We also considered the effects of global signal regression (GSR). We found that the graph metrics were moderately influenced by genetic factors h2 (γ=47-59%, Q=38-59%, ϕnorm=0-29%, λ=52-64%, σ=51-59%) at lower connection densities (≤15%), and when global signal regression was implemented, heritability estimates decreased substantially h2 (γ=0-26%, Q=0-28%, ϕnorm=0%, λ=23-30%, σ=0-27%). Distinct network features were phenotypically correlated (|r|=0.15-0.81), and γ, Q, and λ were found to be influenced by overlapping genetic factors. Our findings suggest that these metrics may be potential endophenotypes for psychiatric disease and suitable for genetic association studies, but that genetic effects must be interpreted with respect to methodological choices.
Resumo:
This paper describes and evaluates the novel utility of network methods for understanding human interpersonal interactions within social neurobiological systems such as sports teams. We show how collective system networks are supported by the sum of interpersonal interactions that emerge from the activity of system agents (such as players in a sports team). To test this idea we trialled the methodology in analyses of intra-team collective behaviours in the team sport of water polo. We observed that the number of interactions between team members resulted in varied intra-team coordination patterns of play, differentiating between successful and unsuccessful performance outcomes. Future research on small-world networks methodologies needs to formalize measures of node connections in analyses of collective behaviours in sports teams, to verify whether a high frequency of interactions is needed between players in order to achieve competitive performance outcomes.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
Most large cities around the world are undergoing rapid transport sector development to cater for increased urbanization. Subsequently the issues of mobility, access equity, congestion, operational safety and above all environmental sustainability are becoming increasingly crucial in transport planning and policy making. The popular response in addressing these issues has been demand management, through improvement of motorised public transport (MPT) modes (bus, train, tram) and non-motorized transport (NMT) modes (walk, bicycle); improved fuel technology. Relatively little attention has however been given to another readily available and highly sustainable component of the urban transport system, non-motorized public transport (NMPT) such as the pedicab that operates on a commercial basis and serves as an NMT taxi; and has long standing history in many Asian cities; relatively stable in existence in Latin America; and reemerging and expanding in Europe, North America and Australia. Consensus at policy level on the apparent benefits, costs and management approach for NMPT integration has often been a major transport planning problem. Within this context, this research attempts to provide a more complete analysis of the current existence rationale and possible future, or otherwise, of NMPT as a regular public transport system. The analytical process is divided into three major stages. Stage 1 reviews the status and role condition of NMPT as regular public transport on a global scale- in developing cities and developed cities. The review establishes the strong ongoing and future potential role of NMPT in major developing cities. Stage 2 narrows down the status review to a case study city of a developing country in order to facilitate deeper role review and status analysis of the mode. Dhaka, capital city of Bangladesh, has been chosen due to its magnitude of NMPT presence. The review and analysis reveals the multisectoral and dominant role of NMPT in catering for the travel need of Dhaka transport users. The review also indicates ad-hoc, disintegrated policy planning in management of NMPT and the need for a planning framework to facilitate balanced integration between NMPT and MT in future. Stage 3 develops an integrated, multimodal planning framework (IMPF), based on a four-step planning process. This includes defining the purpose and scope of the planning exercise, determining current deficiencies and preferred characteristics for the proposed IMPF, selection of suitable techniques to address the deficiencies and needs of the transport network while laying out the IMPF and finally, development of a delivery plan for the IMPF based on a selected layout technique and integration approach. The output of the exercise is a planning instrument (decision tool) that can be used to assign a road hierarchy in order to allocate appropriate traffic to appropriate network type, particularly to facilitate the operational balance between MT and NMT. The instrument is based on a partial restriction approach of motorised transport (MT) and NMT, structured on the notion of functional hierarchy approach, and distributes/prioritises MT and NMT such that functional needs of the network category is best complemented. The planning instrument based on these processes and principles offers a six-level road hierarchy with a different composition of network-governing attributes and modal priority, for the current Dhaka transport network, in order to facilitate efficient integration of NMT with MT. A case study application of the instrument on a small transport network of Dhaka also demonstrates the utility, flexibility and adoptability of the instrument in logically allocating corridors with particular positions in the road hierarchy paradigm. Although the tool is useful in enabling balanced distribution of NMPT with MT at different network levels, further investigation is required with reference to detailed modal variations, scales and locations of a network to further generalise the framework application.
Resumo:
A people-to-people matching system (or a match-making system) refers to a system in which users join with the objective of meeting other users with the common need. Some real-world examples of these systems are employer-employee (in job search networks), mentor-student (in university social networks), consume-to-consumer (in marketplaces) and male-female (in an online dating network). The network underlying in these systems consists of two groups of users, and the relationships between users need to be captured for developing an efficient match-making system. Most of the existing studies utilize information either about each of the users in isolation or their interaction separately, and develop recommender systems using the one form of information only. It is imperative to understand the linkages among the users in the network and use them in developing a match-making system. This study utilizes several social network analysis methods such as graph theory, small world phenomenon, centrality analysis, density analysis to gain insight into the entities and their relationships present in this network. This paper also proposes a new type of graph called “attributed bipartite graph”. By using these analyses and the proposed type of graph, an efficient hybrid recommender system is developed which generates recommendation for new users as well as shows improvement in accuracy over the baseline methods.
Resumo:
Diffusion imaging can map anatomical connectivity in the living brain, offering new insights into fundamental questions such as how the left and right brain hemispheres differ. Anatomical brain asymmetries are related to speech and language abilities, but less is known about left/right hemisphere differences in brain wiring. To assess this, we scanned 457 young adults (age 23.4±2.0 SD years) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high-angular resolution diffusion imaging. We extracted fiber tracts throughout the brain with a Hough transform method. A 70×70 connectivity matrix was created, for each subject, based on the proportion of fibers intersecting 70 cortical regions. We identified significant differences in the proportions of fibers intersecting left and right hemisphere cortical regions. The degree of asymmetry in the connectivity matrices varied with age, as did the asymmetry in network topology measures such as the small-world effect.
Resumo:
The anterior temporal lobes (ATLs) have been proposed to serve as a "hub" linking amodal or domain general information about the meaning of words, objects, facts and people distributed throughout the brain in semantic memory. The two primary sources of evidence supporting this proposal, viz. structural imaging studies in semantic dementia (SD) patients and functional imaging investigations, are not without problems. Similarly, knowledge about the anatomo-functional connectivity of semantic memory is limited to a handful of intra-operative electrocortical stimulation (IES) investigations in patients. Here, using principal components analyses (PCA) of a battery of conceptual and non-conceptual tests coupled with voxel based morphometry (VBM) and diffusion tensor imaging (DTI) in a sample of healthy older adults aged 55-85. years, we show that amodal semantic memory relies on a predominantly left lateralised network of grey matter regions involving the ATL, posterior temporal and posterior inferior parietal lobes, with prominent involvement of the left inferior fronto-occipital fasciculus (IFOF) and uncinate fasciculus fibre pathways. These results demonstrate relationships between semantic memory, brain structure and connectivity essential for human communication and cognition.
Resumo:
Graph theory can be applied to matrices that represent the brain's anatomical connections, to better understand global properties of anatomical networks, such as their clustering, efficiency and "small-world" topology. Network analysis is popular in adult studies of connectivity, but only one study - in just 30 subjects - has examined how network measures change as the brain develops over this period. Here we assessed the developmental trajectory of graph theory metrics of structural brain connectivity in a cross-sectional study of 467 subjects, aged 12 to 30. We computed network measures from 70×70 connectivity matrices of fiber density generated using whole-brain tractography in 4-Tesla 105-gradient high angular resolution diffusion images (HARDI). We assessed global efficiency and modularity, and both age and age 2 effects were identified. HARDI-based connectivity maps are sensitive to the remodeling and refinement of structural brain connections as the human brain develops.
Resumo:
The human connectome has recently become a popular research topic in neuroscience, and many new algorithms have been applied to analyze brain networks. In particular, network topology measures from graph theory have been adapted to analyze network efficiency and 'small-world' properties. While there has been a surge in the number of papers examining connectivity through graph theory, questions remain about its test-retest reliability (TRT). In particular, the reproducibility of structural connectivity measures has not been assessed. We examined the TRT of global connectivity measures generated from graph theory analyses of 17 young adults who underwent two high-angular resolution diffusion (HARDI) scans approximately 3 months apart. Of the measures assessed, modularity had the highest TRT, and it was stable across a range of sparsities (a thresholding parameter used to define which network edges are retained). These reliability measures underline the need to develop network descriptors that are robust to acquisition parameters.
Resumo:
The LIS profession in Australia is a small world where connections are vital for career success and developing resilience. So what about those of us who feel like wallflowers at the party, always on the margins? It can be difficult for quieter souls to step up, get involved and build relationships. A major hurdle for many people, both introverts and extroverts, is figuring out how to proclaim their awesomeness to the world but in a way that is unique to them. The aim of this session is to inspire and challenge students, new grads and anyone who has a fear of networking to take risks and explore a different more social side of themselves without changing their personalities. This is a deeply personal topic with plenty of fear and self-image issues at stake. As well, most of us have had very few opportunities to find role models or a chance to practice in a comfortable environment. Therefore the authors will present strategies for success based on their personal experiences. We will demonstrate the actual benefits we have attained through our networking and volunteer activities. We hope that attendees will come away with some realistic strategies and goals to create lasting relationships with present and future colleagues such as we have enjoyed. Our networking tips may not transform you into the belle of the ball but you will have more confidence to get out on the dance floor and dance to your own beat.
Resumo:
An alternative approach to port decoupling and matching of arrays with tightly coupled elements is proposed. The method is based on the inherent decoupling effect obtained by feeding the orthogonal eigenmodes of the array. For this purpose, a modal feed network is connected to the array. The decoupled external ports of the feed network may then be matched independently by using conventional matching circuits. Such a system may be used in digital beam forming applications with good signal-to-noise performance. The theory is applicable to arrays with an arbitrary number of elements, but implementation is only practical for smaller arrays. The principle is illustrated by means of two examples.