84 resultados para size effects
em Queensland University of Technology - ePrints Archive
Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale
Resumo:
Tensile and fatigue properties of as-rolled and annealed polycrystalline Cu foils with different thicknesses at the micrometer scale were investigated. Uniaxial tensile testing results showed that with decreasing foil thickness the uniform elongation decreases for both as-rolled and annealed foils, whereas the yield strength and ultimate tensile strength increase for as-rolled foils, but decrease for the annealed foils. For both the as-rolled or annealed foils, bending fatigue resistance decreases with decreasing the foil thickness. Deformation and fatigue damage behaviour of the free-standing foils were characterised as a function of foil thickness. In addition, the fatigue strength of various small-scale Cu foils was compared to understand they physical mechanisms of size effects on mechanical properties of the metallic material at micrometer scales.
Resumo:
The results of large-scale (∼109 atoms) numerical simulations of the growth of different-diameter vertically-aligned single-walled carbon nanotubes in plasma systems with different sheath widths and in neutral gases with the same operating parameters are reported. It is shown that the nanotube lengths and growth rates can be effectively controlled by varying the process conditions. The SWCNT growth rates in the plasma can be up to two orders of magnitude higher than in the equivalent neutral gas systems. Under specific process conditions, thin SWCNTs can grow much faster than their thicker counterparts despite the higher energies required for catalyst activation and nanotube nucleation. This selective growth of thin SWCNTs opens new avenues for the solution of the currently intractable problem of simultaneous control of the nanotube chirality and length during the growth stage.
Resumo:
Brain asymmetry has been a topic of interest for neuroscientists for many years. The advent of diffusion tensor imaging (DTI) allows researchers to extend the study of asymmetry to a microscopic scale by examining fiber integrity differences across hemispheres rather than the macroscopic differences in shape or structure volumes. Even so, the power to detect these microarchitectural differences depends on the sample size and how the brain images are registered and how many subjects are studied. We fluidly registered 4 Tesla DTI scans from 180 healthy adult twins (45 identical and fraternal pairs) to a geometrically-centered population mean template. We computed voxelwise maps of significant asymmetries (left/right hemisphere differences) for common fiber anisotropy indices (FA, GA). Quantitative genetic models revealed that 47-62% of the variance in asymmetry was due to genetic differences in the population. We studied how these heritability estimates varied with the type of registration target (T1- or T2-weighted) and with sample size. All methods consistently found that genetic factors strongly determined the lateralization of fiber anisotropy, facilitating the quest for specific genes that might influence brain asymmetry and fiber integrity.
Resumo:
Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.
Resumo:
An important responsibility of the Environment Protection Authority, Victoria, is to set objectives for levels of environmental contaminants. To support the development of environmental objectives for water quality, a need has been identified to understand the dual impacts of concentration and duration of a contaminant on biota in freshwater streams. For suspended solids contamination, information reported by Newcombe and Jensen [ North American Journal of Fisheries Management , 16(4):693--727, 1996] study of freshwater fish and the daily suspended solids data from the United States Geological Survey stream monitoring network is utilised. The study group was requested to examine both the utility of the Newcombe and Jensen and the USA data, as well as the formulation of a procedure for use by the Environment Protection Authority Victoria that takes concentration and duration of harmful episodes into account when assessing water quality. The extent to which the impact of a toxic event on fish health could be modelled deterministically was also considered. It was found that concentration and exposure duration were the main compounding factors on the severity of effects of suspended solids on freshwater fish. A protocol for assessing the cumulative effect on fish health and a simple deterministic model, based on the biology of gill harm and recovery, was proposed. References D. W. T. Au, C. A. Pollino, R. S. S Wu, P. K. S. Shin, S. T. F. Lau, and J. Y. M. Tang. Chronic effects of suspended solids on gill structure, osmoregulation, growth, and triiodothyronine in juvenile green grouper epinephelus coioides . Marine Ecology Press Series , 266:255--264, 2004. J.C. Bezdek, S.K. Chuah, and D. Leep. Generalized k-nearest neighbor rules. Fuzzy Sets and Systems , 18:237--26, 1986. E. T. Champagne, K. L. Bett-Garber, A. M. McClung, and C. Bergman. {Sensory characteristics of diverse rice cultivars as influenced by genetic and environmental factors}. Cereal Chem. , {81}:{237--243}, {2004}. S. G. Cheung and P. K. S. Shin. Size effects of suspended particles on gill damage in green-lipped mussel perna viridis. Marine Pollution Bulletin , 51(8--12):801--810, 2005. D. H. Evans. The fish gill: site of action and model for toxic effects of environmental pollutants. Environmental Health Perspectives , 71:44--58, 1987. G. C. Grigg. The failure of oxygen transport in a fish at low levels of ambient oxygen. Comp. Biochem. Physiol. , 29:1253--1257, 1969. G. Holmes, A. Donkin, and I.H. Witten. {Weka: A machine learning workbench}. In Proceedings of the Second Australia and New Zealand Conference on Intelligent Information Systems , volume {24}, pages {357--361}, {Brisbane, Australia}, {1994}. {IEEE Computer Society}. D. D. Macdonald and C. P. Newcombe. Utility of the stress index for predicting suspended sediment effects: response to comments. North American Journal of Fisheries Management , 13:873--876, 1993. C. P. Newcombe. Suspended sediment in aquatic ecosystems: ill effects as a function of concentration and duration of exposure. Technical report, British Columbia Ministry of Environment, Lands and Parks, Habitat Protection branch, Victoria, 1994. C. P. Newcombe and J. O. T. Jensen. Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact. North American Journal of Fisheries Management , 16(4):693--727, 1996. C. P. Newcombe and D. D. Macdonald. Effects of suspended sediments on aquatic ecosystems. North American Journal of Fisheries Management , 11(1):72--82, 1991. K. Schmidt-Nielsen. Scaling. Why is animal size so important? Cambridge University Press, NY, 1984. J. S. Schwartz, A. Simon, and L. Klimetz. Use of fish functional traits to associate in-stream suspended sediment transport metrics with biological impairment. Environmental Monitoring and Assessment , 179(1--4):347--369, 2011. E. Al Shaw and J. S. Richardson. Direct and indirect effects of sediment pulse duration on stream invertebrate assemb ages and rainbow trout ( Oncorhynchus mykiss ) growth and survival. Canadian Journal of Fish and Aquatic Science , 58:2213--2221, 2001. P. Tiwari and H. Hasegawa. {Demand for housing in Tokyo: A discrete choice analysis}. Regional Studies , {38}:{27--42}, {2004}. Y. Tramblay, A. Saint-Hilaire, T. B. M. J. Ouarda, F. Moatar, and B Hecht. Estimation of local extreme suspended sediment concentrations in california rivers. Science of the Total Environment , 408:4221--
Resumo:
Ductile-brittle fracture transition was investigated using compact tension (CT) specimens from -70oC to 40oC for a carbon steel. Large deformation finite element analysis has been carried out to simulate the stable crack growth in the compact tension (CT, a/W=0.6), three point-point bend (SE(B), a/W=0.1) and centre-cracked tension (M(T), a/W=0.5) specimens. Experimental crack tip opening displacement (CTOD) resistance curve was employed as the crack growth criterion. Ductile tearing is sensitive to constraint and tearing modulus increases with reduced constraint level. The finite element analysis shows that path-dependence of J-integral occurs from the very beginning of crack growth and ductile crack growth elevates the opening stress on the remaining ligament. Cleavage may occur after some ductile crack growth due to the increase of opening stress. For both stationary and growing cracks, the magnitude of opening stress increases with increasing in-plane constraint. The ductile-brittle transition takes place when the opening stress ahead of the crack tip reaches the local cleavage stress as the in-plane constraint of the specimen increases.
Resumo:
The co-curing process for advanced grid-stiffened (AGS) composite structure is a promising manufacturing process, which could reduce the manufacturing cost, augment the advantages and improve the performance of AGS composite structure. An improved method named soft-mold aided co-curing process which replaces the expansion molds by a whole rubber mold is adopted in this paper. This co-curing process is capable to co-cure a typical AGS composite structure with the manufacturer’s recommended cure cycle (MRCC). Numerical models are developed to evaluate the variation of temperature and the degree of cure in AGS composite structure during the soft-mold aided co-curing process. The simulation results were validated by experimental results obtained from embedded temperature sensors. Based on the validated modeling framework, the cycle of cure can be optimized by reducing more than half the time of MRCC while obtaining a reliable degree of cure. The shape and size effects of AGS composite structure on the distribution of temperature and degree of cure are also investigated to provide insights for the optimization of soft-mold aided co-curing process.
Resumo:
The unsaturated soil mechanics is receiving increasing attention from researchers and as well as from practicing engineers. However, the requirement of sophisticated devices to measure unsaturated soil properties and time consumption have made the geotechnical engineers keep away from implication of the unsaturated soil mechanics for solving practical geotechnical problems. The application of the conventional laboratory devices with some modifications to measure unsaturated soil properties can promote the application of unsaturated soil mechanics into engineering practice. Therefore, in the present study, a conventional direct shear device was modified to measure unsaturated shear strength parameters at low suction. Specially, for the analysis of rain-induced slope failures, it is important to measure unsaturated shear strength parameters at low suction where slopes become unstable. The modified device was used to measure unsaturated shear strength of two silty soils at low suction values (0 ~ 50 kPa) that were achieved by following drying path and wetting path of soil-water characteristic curves (SWCCs) of soils. The results revealed that the internal friction angle of soil was not significantly affected by the suction and as well as the drying-wetting SWCCs of soils. The apparent cohesion of soil increased with a decreasing rate as the suction increased. Further, the apparent cohesion obtained from soil in wetting was greater than that obtained from soil in drying. Shear stress-shear displacement curves obtained from soil specimens subjected to the same net normal stress and different suction values showed a higher initial stiffness and a greater peak stress as the suction increased. In addition, it was observed that soil became more dilative with the increase of suction. A soil in wetting exhibited slightly higher peak shear stress and more contractive volume change behaviour than that of in drying at the same net normal stress and the suction.
Resumo:
The purpose of this article is to examine how a consumer’s weight control beliefs (WCB), a female advertising model’s body size (slim or large) and product type influence consumer evaluations and consumer body perceptions. The study uses an experiment of 371 consumers. The design of the experiment was a 2 (weight control belief: internal, external) X 2 (model size: larger sized, slim) X 2 (product type: weight controlling, non-weight controlling) between-participants factorial design. Results reveal two key contributions. First, larger sized models result in consumers feeling less pressure from society to be thin, viewing their actual shape as slimmer relative to viewing a slim model and wanting a thinner ideal body shape. Slim models result in the opposite effects. Second this research reveals a boundary condition for the extent to which endorser–product congruency theory can be generalized to endorsers of a larger body size. Results indicate that consumer WCB may be a useful variable to consider when marketers consider the use of larger models in advertising.
Resumo:
This paper presents the findings of an analysis of the activities of rural nurses from a national audit of the role and function of the rural nurse (Hegney, Pearson and McCarthy 1997). The results suggest that the size of the health service (defined by the number of acute beds) influences the activities of rural nurses. Further, the study reports on the differences of the context of practice between different size rural health services and the impact this has on the scope of rural nursing practice. The paper will conclude that the size of the health service is an outcome of rurality (small population densities, distance from larger health facilities, lack of on-site medical and allied health staff). It also notes that the size of the health service is a major contextual determinant of patient acuity and staff skill-mix in small rural hospitals, and therefore the scope of rural nursing practice.
Resumo:
A multiscale, multiphase thermokinetic model is used to show the effective control of the growth orientation of thin Si NWs for nanoelectronic devices enabled by nanoscale plasma chemistry. It is shown that very thin Si NWs with [110] growth direction can nucleate at much lower process temperatures and pressures compared to thermal chemical vapor deposition where [111]-directed Si NWs are predominantly grown. These findings explain a host of experimental results and offer the possibility of energy- and matter-efficient, size- and orientation-controlled growth of [110] Si NWs for next-generation nanodevices.
Resumo:
Aerial applications of granular insecticides are preferable because they can effectively penetrate vegetation, there is less drift, and no loss of product due to evaporation. We aimed to 1) assess the field efficacy ofVectoBac G to control Aedes vigilax (Skuse) in saltmarsh pools, 2) develop a stochastic-modeling procedure to monitor application quality, and 3) assess the distribution of VectoBac G after an aerial application. Because ground-based studies with Ae. vigilax immatures found that VectoBac G provided effective control below the recommended label rate of 7 kg/ha, we trialed a nominated aerial rate of 5 kg/ha as a case study. Our distribution pattern modeling method indicated that the variability in the number of VectoBac G particles captured in catch-trays was greater than expected for 5 kg/ha and that the widely accepted contour mapping approach to visualize the deposition pattern provided spurious results and therefore was not statistically appropriate. Based on the results of distribution pattern modeling, we calculated the catch tray size required to analyze the distribution of aerially applied granular formulations. The minimum catch tray size for products with large granules was 4 m2 for Altosid pellets and 2 m2 for VectoBac G. In contrast, the minimum catch-tray size for Altosid XRG, Aquabac G, and Altosand, with smaller granule sizes, was 1 m2. Little gain in precision would be made by increasing the catch-tray size further, when the increased workload and infrastructure is considered. Our improved methods for monitoring the distribution pattern of aerially applied granular insecticides can be adapted for use by both public health and agricultural contractors.
Resumo:
This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.