359 resultados para signal-flow graphs
em Queensland University of Technology - ePrints Archive
Resumo:
Data flow analysis techniques can be used to help assess threats to data confidentiality and integrity in security critical program code. However, a fundamental weakness of static analysis techniques is that they overestimate the ways in which data may propagate at run time. Discounting large numbers of these false-positive data flow paths wastes an information security evaluator's time and effort. Here we show how to automatically eliminate some false-positive data flow paths by precisely modelling how classified data is blocked by certain expressions in embedded C code. We present a library of detailed data flow models of individual expression elements and an algorithm for introducing these components into conventional data flow graphs. The resulting models can be used to accurately trace byte-level or even bit-level data flow through expressions that are normally treated as atomic. This allows us to identify expressions that safely downgrade their classified inputs and thereby eliminate false-positive data flow paths from the security evaluation process. To validate the approach we have implemented and tested it in an existing data flow analysis toolkit.
Resumo:
The idea of extracting knowledge in process mining is a descendant of data mining. Both mining disciplines emphasise data flow and relations among elements in the data. Unfortunately, challenges have been encountered when working with the data flow and relations. One of the challenges is that the representation of the data flow between a pair of elements or tasks is insufficiently simplified and formulated, as it considers only a one-to-one data flow relation. In this paper, we discuss how the effectiveness of knowledge representation can be extended in both disciplines. To this end, we introduce a new representation of the data flow and dependency formulation using a flow graph. The flow graph solves the issue of the insufficiency of presenting other relation types, such as many-to-one and one-to-many relations. As an experiment, a new evaluation framework is applied to the Teleclaim process in order to show how this method can provide us with more precise results when compared with other representations.
Resumo:
Significant increase in installation of rooftop Photovoltaic (PV) in the Low-Voltage (LV) residential distribution network has resulted in over voltage problems. Moreover, increasing peak demand creates voltage dip problems and make voltage profile even worse. Utilizing the reactive power capability of PV inverter (RCPVI) can improve the voltage profile to some extent. Resistive caharcteristic (higher R/X ratio) limits the effectiveness of reactive power to provide voltage support in distribution network. Battery Energy Storage (BES), whereas, can store the excess PV generation during high solar insolation time and supply the stored energy back to the grid during peak demand. A coordinated algorithm is developed in this paper to use the reactive capability of PV inverter and BES with droop control. Proposed algorithm is capable to cater the severe voltage violation problem using RCPVI and BES. A signal flow is also mentioned in this research work to ensure smooth communication between all the equipments. Finally the developed algorithm is validated in a test distribution network.
Resumo:
Person tracking systems to date have either relied on motion detection or optical flow as a basis for person detection and tracking. As yet, systems have not been developed that utilise both these techniques. We propose a person tracking system that uses both, made possible by a novel hybrid optical flow-motion detection technique that we have developed. This provides the system with two methods of person detection, helping to avoid missed detections and the need to predict position, which can lead to errors in tracking and mistakes when handling occlusion situations. Our results show that our system is able to track people accurately, with an average error less than four pixels, and that our system outperforms the current CAVIAR benchmark system.
Resumo:
This paper presents a model to estimate travel time using cumulative plots. Three different cases considered are i) case-Det, for only detector data; ii) case-DetSig, for detector data and signal controller data and iii) case-DetSigSFR: for detector data, signal controller data and saturation flow rate. The performance of the model for different detection intervals is evaluated. It is observed that detection interval is not critical if signal timings are available. Comparable accuracy can be obtained from larger detection interval with signal timings or from shorter detection interval without signal timings. The performance for case-DetSig and for case-DetSigSFR is consistent with accuracy generally more than 95% whereas, case-Det is highly sensitive to the signal phases in the detection interval and its performance is uncertain if detection interval is integral multiple of signal cycles.
Resumo:
Fuzzy logic has been applied to control traffic at road junctions. A simple controller with one fixed rule-set is inadequate to minimise delays when traffic flow rate is time-varying and likely to span a wide range. To achieve better control, fuzzy rules adapted to the current traffic conditions are used.
Resumo:
Within a surveillance video, occlusions are commonplace, and accurately resolving these occlusions is key when seeking to accurately track objects. The challenge of accurately segmenting objects is further complicated by the fact that within many real-world surveillance environments, the objects appear very similar. For example, footage of pedestrians in a city environment will consist of many people wearing dark suits. In this paper, we propose a novel technique to segment groups and resolve occlusions using optical flow discontinuities. We demonstrate that the ratio of continuous to discontinuous pixels within a region can be used to locate the overlapping edges, and incorporate this into an object tracking framework. Results on a portion of the ETISEO database show that the proposed algorithm results in improved tracking performance overall, and improved tracking within occlusions.
Resumo:
In this paper, a method has been developed for estimating pitch angle, roll angle and aircraft body rates based on horizon detection and temporal tracking using a forward-looking camera, without assistance from other sensors. Using an image processing front-end, we select several lines in an image that may or may not correspond to the true horizon. The optical flow at each candidate line is calculated, which may be used to measure the body rates of the aircraft. Using an Extended Kalman Filter (EKF), the aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and the location of the horizon. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To test the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42◦ and 0.71◦ respectively when compared with a truth attitude source. The Cessna flight resulted in pitch and roll error standard deviations of 1.79◦ and 1.75◦ respectively. The benefits of selecting and tracking the horizon using a motion model and optical flow rather than naively relying on the image processing front-end is also demonstrated.
Resumo:
Automated visual surveillance of crowds is a rapidly growing area of research. In this paper we focus on motion representation for the purpose of abnormality detection in crowded scenes. We propose a novel visual representation called textures of optical flow. The proposed representation measures the uniformity of a flow field in order to detect anomalous objects such as bicycles, vehicles and skateboarders; and can be combined with spatial information to detect other forms of abnormality. We demonstrate that the proposed approach outperforms state-of-the-art anomaly detection algorithms on a large, publicly-available dataset.
Resumo:
Condition monitoring of diesel engines can prevent unpredicted engine failures and the associated consequence. This paper presents an experimental study of the signal characteristics of a 4-cylinder diesel engine under various loading conditions. Acoustic emission, vibration and in-cylinder pressure signals were employed to study the effectiveness of these techniques for condition monitoring and identifying symptoms of incipient failures. An event driven synchronous averaging technique was employed to average the quasi-periodic diesel engine signal in the time domain to eliminate or minimize the effect of engine speed and amplitude variations on the analysis of condition monitoring signal. It was shown that acoustic emission (AE) is a better technique than vibration method for condition monitor of diesel engines due to its ability to produce high quality signals (i.e., excellent signal to noise ratio) in a noisy diesel engine environment. It was found that the peak amplitude of AE RMS signals correlating to the impact-like combustion related events decreases in general due to a more stable mechanical process of the engine as the loading increases. A small shift in the exhaust valve closing time was observed as the engine load increases which indicates a prolong combustion process in the cylinder (to produce more power). On the contrary, peak amplitudes of the AE RMS attributing to fuel injection increase as the loading increases. This can be explained by the increase fuel friction caused by the increase volume flow rate during the injection. Multiple AE pulses during the combustion process were identified in the study, which were generated by the piston rocking motion and the interaction between the piston and the cylinder wall. The piston rocking motion is caused by the non-uniform pressure distribution acting on the piston head as a result of the non-linear combustion process of the engine. The rocking motion ceased when the pressure in the cylinder chamber stabilized.
Resumo:
In this paper two-dimensional (2-D) numerical investigation of flow past four square cylinders in an in-line square configuration are performed using the lattice Boltzmann method. The gap spacing g=s/d is set at 1, 3 and 6 and Reynolds number ranging from Re=60 to 175. We observed four distinct wake patterns: (i) a steady wake pattern (Re=60 and g=1) (ii) a stable shielding wake pattern (80≤Re≤175 and g=1) (iii) a wiggling shielding wake pattern (60≤Re≤175 and g=3) (iv) a vortex shedding wake pattern (60≤Re≤175 and g=6) At g=1, the Reynolds number is observed to have a strong effect on the wake patterns. It is also found that at g=1, the secondary cylinder interaction frequency significantly contributes for drag and lift coefficients signal. It is found that the primary vortex shedding frequency dominates the flow and the role of secondary cylinder interaction frequency almost vanish at g=6. It is observed that the jet between the gaps strongly influenced the wake interaction for different gap spacing and Reynolds number combination. To fully understand the wake transformations the details vorticity contour visualization, power spectra of lift coefficient signal and time signal analysis of drag and lift coefficients also presented in this paper.
Resumo:
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti’s reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.
Resumo:
The Mekong is the most productive river fishery in the world, and such as, the Mekong River Basin (MRB) is very important to very large human populations across the region as a source of revenue (through fishing and marketing of aquatic resources products) and as the major source for local animal protein. Threats to biodiversity in the MRB, either to the fishery sector itself or to other sectors are a major concern, even though currently, fisheries across this region are still very productive. If not managed properly however, fish population declines will cause significant economic impact and affect livelihoods of local people and will have a major impact on food security and nutrition. Biodiversity declines will undoubtedly affect food security, income and socio-economic status of people in the MRB that depend on aquatic resources. This is an indicator of unsustainable development and hence should be avoided. Genetic diversity (biodiversity) that can be measured using techniques based on DNA markers; refers to variation within and among populations within the same species or reproductive units. In a population, new genetic variation is generated by sexual recombination contributed by individuals with mutations in genes and chromosomes. Over time, populations of a species that are not reproducing together will diverge as differential impacts of selection and genetic drift change their genetic attributes. For mud carp (Henicorhynchus spp.), understanding the status of breeding units in the MRB will be important for their long term persistence, sustainability and for implementing effective management strategies. Earlier analysis of stock structure in two economically important mud carp species (Henicorhynchus siamensis and H. lobatus) in the MRB completed with mtDNA markers identified a number of populations of both species where gene flow had apparently been interrupted or reduced but applying these data directly to management unit identification is potentially compromised because information was only available about female dispersal patterns. The current study aimed to address this problem and to fully assess the extent of current gene flow (nDNA) and reproductive exchange among selected wild populations of two species of carp (Henicorhynchus spp.) of high economic importance in the MRB using combined mtDNA and nDNA markers. In combination, the data can be used to define effective management units for each species. In general, nDNA diversity for H. lobatus (with average allelic richness (A) 7.56 and average heterozygosity (Ho) 0.61) was very similar to that identified for H. siamensis (A = 6.81 and Ho = 0.75). Both mud carp species show significant but low FST estimates among populations as a result of lower genetic diversity among sampled populations compared with genetic diversity within populations that may potentially mask any 'real' population structure. Overall, population genetic structure patterns from mtDNA and nDNA in both Henicorhynchus species were largely congruent. Different population structures however, were identified for the two Henicorhynchus species across the same geographical area. Apparent co-similarity in morphology and co-distribution of these two relatively closely related species does not apparently imply parallel evolutionary histories. Differences in each species population structure likely reflect historical drainage rearrangement of the Mekong River. The data indicate that H. siamensis is likely to have occupied the Mekong system for much longer than has H. lobatus in the past. Two divergent stocks were identified for H. lobatus in the MRB below the Khone Falls while a single stock had been evident in the earlier mtDNA study. This suggests that the two Henicorhynchus species may possess different life history traits and that different patterns of gene flow has likely influenced modern genetic structure in these close congeners. In combination, results of the earlier mtDNA and the current study have implications for effective management of both Henicorhynchus species across the MRB. Currently, both species are essentially treated as a single management unit in this region. This strategy may be appropriate for H. lobatus as a single stock was evident in the main stream of the MRB, but may not be appropriate for H. siamensis as more than a single stock was identified across the same range for this species. Management strategies should consider this difference to conserve overall biodiversity (local discrete populations) and this will include maintaining natural habitat and migration pathways, provision of fish sanctuaries (refuges) and may also require close monitoring of any stock declines, a signal that may require effective recovery strategies.
Resumo:
We propose a topological localization method based on optical flow information. We analyse the statistical characteristics of the optical flow signal and demonstrate that the flow vectors can be used to identify and describe key locations in the environment. The key locations (nodes) correspond to significant scene changes and depth discontinuities. Since optical flow vectors contain position, magnitude and angle information, for each node, we extract low and high order statistical moments of the vectors and use them as descriptors for that node. Once a database of nodes and their corresponding optical flow features is created, the robot can perform topological localization by using the Mahalanobis distance between the current frame and the database. This is supported by field trials, which illustrate the repeatability of the proposed method for detecting and describing key locations in indoor and outdoor environments in challenging and diverse lighting conditions.
Resumo:
We propose the use of optical flow information as a method for detecting and describing changes in the environment, from the perspective of a mobile camera. We analyze the characteristics of the optical flow signal and demonstrate how robust flow vectors can be generated and used for the detection of depth discontinuities and appearance changes at key locations. To successfully achieve this task, a full discussion on camera positioning, distortion compensation, noise filtering, and parameter estimation is presented. We then extract statistical attributes from the flow signal to describe the location of the scene changes. We also employ clustering and dominant shape of vectors to increase the descriptiveness. Once a database of nodes (where a node is a detected scene change) and their corresponding flow features is created, matching can be performed whenever nodes are encountered, such that topological localization can be achieved. We retrieve the most likely node according to the Mahalanobis and Chi-square distances between the current frame and the database. The results illustrate the applicability of the technique for detecting and describing scene changes in diverse lighting conditions, considering indoor and outdoor environments and different robot platforms.