7 resultados para rose bengal
em Queensland University of Technology - ePrints Archive
Resumo:
Ever since sodium fluorescein (‘fluorescein’ [FL]) was first used to investigate the ocular surface over a century ago, the term ‘staining’ has been taken to mean the presence of ocular surface fluorescence [1]. This term has not been necessarily taken to infer any particular mechanism of causation, and indeed, can be attributed to a variety of possible aetiologies [2]. In recent times, there has been considerable interest in a form of ocular surface fluorescence seen in association with the use of certain combinations of soft contact lenses and multipurpose solutions. The first clinical account of this phenomenon was reported by Jones et al. [3], which was followed by a more formal investigation by the same author in 2002 [4]. Jones et al described this appearance as a ‘classic solution-based toxicity reaction’. Subsequently, this appearance has come to be known as ‘solution-induced corneal staining’ or more recently by the acronym ‘SICS’ [5]. The term SICS is potentially problematic in that from a cell biology point of view, there is an inference that ‘staining’ means the entry of a dye into corneal epithelial cells. Morgan and Maldonado-Codina [2] noted there was no foundation of solid scientific literature underpinning our understanding of the true basic causative mechanisms of this phenomenon; since that time, further work has been published in this field [6] and [7] but questions still remain about the precise aetiology of this phenomenon...
Resumo:
While vital staining remains a cornerstone in the diagnosis of ocular disease and contact lens complications, there are many misconceptions regarding the properties of commonly used dyes by eye-care practitioners and what is and what is not corneal staining after instillation of sodium fluorescein. Similarly, the proper use and diagnostic utility of rose Bengal and lissamine green B, the other two ophthalmic dyes commonly used for assessing ocular complications, have similarly remained unclear. Due to the limitations of vital stains for definitive diagnosis, concomitant signs and symptoms in addition to a complete patient history are required. Over the past decade, there have been many reports of a type of corneal staining—often referred to as solution-induced corneal staining (SICS)—that is observed with the use of multipurpose solutions in combination with soft lenses, more specifically silicone hydrogel lenses. Some authors believe that SICS is a sign of lens/solution incompatibility; however, new research shows that SICS may be neither a measure of lens/solution biocompatibility nor ‘true’ corneal staining, as that observed in pathological situations. A large component of SICS may be a benign phenomenon, known as preservative-associated transient hyperfluorescence (PATH). There is a lack of correlated signs and/or symptoms with SICS/PATH. Several properties of SICS/PATH, such as appearance and duration, differentiate it from pathological corneal staining. This paper reviews the properties of vital stains, their use and limitations in assessment of the ocular surface, the aetiology of corneal staining, characteristics of SICS/PATH that differentiate it from pathological corneal staining and what the SICS/PATH phenomenon means for contact lens-wearing patients.
Resumo:
Professor Christian Langton is a medical physicist at Queensland University of Technology in Brisbane. He has developed a way of preparing children who are about to have either radiotherapy or MRI imaging procedures and is seeking research partners to develop and test these further. This is a great opportunity for nurses interested in research, and who have access to a children’s hospital, to work with Professor Langton on some truly innovative, multidisciplinary research.
Resumo:
Korean rose bitterling (Rhodeus uyekii) is a freshwater fish endemic to Korea. Natural populations of this species have experienced severe declines as a result of habitat fragmentation and water pollution. To conserve and restore R. uyekii, the genetic diversity of this species needs to be assessed at the population level. Eighteen novel polymorphic microsatellite loci for R. uyekii were developed using an enriched partial genomic library. Polymorphisms at these loci were studied in 150 individuals collected from three populations. The number of alleles at each locus ranged from 3 to 47 (mean = 17.1). Within the populations, the observed heterozygosity ranged from 0.032 to 1.000, expected heterozygosity from 0.082 to 0.967, and polymorphism information content from 0.078 to 0.950. Six loci showed significant deviation from Hardy-Weinberg equilibrium after Bonferroni’s correction, and no significant linkage disequilibrium was detected between most locus pairs, except in three cases. These highly informative microsatellite markers should be useful for genetic population structure analyses of R. uyekii.