28 resultados para root meander and curling.
em Queensland University of Technology - ePrints Archive
Resumo:
This study investigates the short-run dynamics and long-run equilibrium relationship between residential electricity demand and factors influencing demand - per capita income, price of electricity, price of kerosene oil and price of liquefied petroleum gas - using annual data for Sri Lanka for the period, 1960-2007. The study uses unit root, cointegration and error-correction models. The long-run demand elasticities of income, own price and price of kerosene oil (substitute) were estimated to be 0.78, - 0.62, and 0.14 respectively. The short-run elasticities for the same variables were estimated to be 032, - 0.16 and 0.10 respectively. Liquefied petroleum (LP) gas is a substitute for electricity only in the short-run with an elasticity 0.09. The main findings of the paper support the following (1) increasing the price of electricity is not the most effective tool to reduce electricity consumption (2) existing subsidies on electricity consumption can be removed without reducing government revenue (3) the long-run income elasticity of demand shows that any future increase in household incomes is likely to significantly increase the demand for electricity and(4) any power generation plans which consider only current per capita consumption and population growth should be revised taking into account the potential future income increases in order to avoid power shortages ill the country.
Resumo:
The ultimate goal of periodontal tissue engineering is to produce predictable regeneration of alveolar bone, root cementum, and periodontal ligament, which are lost as a result of periodontal diseases. To achieve this goal, it is of great importance to develop novel bioactive materials which could stimulate the proliferation, differentiation and osteogenic/cementogenic gene expression of periodontal ligament cells (PDLCs) for periodontal regeneration. In this study, we synthesized novel Ca7Si2P2O16 ceramic powders for the first time by the sol–gel method and investigated the biological performance of PDLCs after exposure to different concentrations of Ca7Si2P2O16 extracts. The original extracts were prepared at 200 mg ml-1 and further diluted with serum-free cell culture medium to obtain a series of diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml–1). Proliferation, alkaline phosphatase(ALP) activity, Ca deposition, and osteogenesis/cementogenesis-related gene expression (ALP, Col I, Runx2 and CEMP1) were assayed for PDLCs on days 7 and 14. The results showed that the ionic products from Ca7Si2P2O16 powders significantly stimulated the proliferation, ALP activity, Ca deposition and osteogenesis/cementogenesisrelated gene expression of PDLCs. In addition, it was found that Ca7Si2P2O16 powders had excellent apatite-mineralization ability in simulated body fluids. This study demonstrated that Ca7Si2P2O16 powders with such a specific composition possess the ability to stimulate the PDLC proliferation and osteoblast/cemenoblast-like cell differentiation, indicating that they are a promising bioactive material for periodontal tissue regeneration application.
Resumo:
The Agrobacterium-mediated transformation system was extended to two indica cultivars: a widely cultivated breeding line IR-64 and an elite basmati cultivar Karnal Local. Root tips and shoot tips of seedlings, and scutellar-calli derived from mature seeds showed high-efficiency Agrobacterium tumefaciens infection and stable transformation. In addition to the superbinary vector pTOK233 in Agrobacterium strain LBA4404, almost equally high levels of transformation were achieved with a relatively much smaller (13.1 kb) binary vector (pCAMBIA1301) in a supervirulent host strain AGL1. In both cases, as well as in both cultivars, while 60–90% of the infected explants produced calli resistant to the selectable agent hygromycin, 59–75% of such calli tested positive for GUS. A high level (400 μM) of acetosyringone in the preinduction medium for Agrobacterium and a higher level (500 μM) in the cocultivation medium was necessary for an enhancement in transformation frequency of the binary vector to levels comparable to a superbinary. Hygromycin-resistant calli could be produced from all the explants used. Transformants could be regenerated for both cultivars using the superbinary and binary vector, but only for calli of scutellar origin. In addition to the molecular confirmation of hpt and gus gene transfer and transcription, absence of gene sequences outside the transferred DNA (T-DNA) region confirmed absence of any long T-DNA transfer.
Resumo:
Background Bactrocera dorsalis s.s. is a pestiferous tephritid fruit fly distributed from Pakistan to the Pacific, with the Thai/Malay peninsula its southern limit. Sister pest taxa, B. papayae and B. philippinensis, occur in the southeast Asian archipelago and the Philippines, respectively. The relationship among these species is unclear due to their high molecular and morphological similarity. This study analysed population structure of these three species within a southeast Asian biogeographical context to assess potential dispersal patterns and the validity of their current taxonomic status. Results Geometric morphometric results generated from 15 landmarks for wings of 169 flies revealed significant differences in wing shape between almost all sites following canonical variate analysis. For the combined data set there was a greater isolation-by-distance (IBD) effect under a ‘non-Euclidean’ scenario which used geographical distances within a biogeographical ‘Sundaland context’ (r2 = 0.772, P < 0.0001) as compared to a ‘Euclidean’ scenario for which direct geographic distances between sample sites was used (r2 = 0.217, P < 0.01). COI sequence data were obtained for 156 individuals and yielded 83 unique haplotypes with no correlation to current taxonomic designations via a minimum spanning network. BEAST analysis provided a root age and location of 540kya in northern Thailand, with migration of B. dorsalis s.l. into Malaysia 470kya and Sumatra 270kya. Two migration events into the Philippines are inferred. Sequence data revealed a weak but significant IBD effect under the ‘non-Euclidean’ scenario (r2 = 0.110, P < 0.05), with no historical migration evident between Taiwan and the Philippines. Results are consistent with those expected at the intra-specific level. Conclusions Bactrocera dorsalis s.s., B. papayae and B. philippinensis likely represent one species structured around the South China Sea, having migrated from northern Thailand into the southeast Asian archipelago and across into the Philippines. No migration is apparent between the Philippines and Taiwan. This information has implications for quarantine, trade and pest management.
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with adhesion molecules, growth factors and a variety of other effector molecules. Accordingly, these molecules play a central role in various aspects of cell–cell and cell–matrix interactions. To investigate the expression and distribution of the cell surface proteoglycans, syndecan-1 and -2, during periodontal wound healing, immunohistochemical analyses were carried out using monoclonal antibodies against syndecan-1, or -2 core proteins. Both syndecan-1 and -2 were expressed and distributed differentially at various stages of early inflammatory cell infiltration, granulation tissue formation, and tissue remodeling in periodontal wound healing. Expression of syndecan-1 was noted in inflammatory cells within and around the fibrin clots during the earliest stages of inflammatory cell infiltration. During granulation tissue formation it was noted in fibroblast-like cells and newly formed blood vessels. Syndecan-1 was not seen in newly formed bone or cementum matrix at any of the time periods studied. Syndecan-1 expression was generally less during the late stages of wound healing but was markedly expressed in cells that were close to the repairing junctional epithelium. In contrast, syndecan-2 expression and distribution was not evident at the early stages of inflammatory cell infiltration. During the formation of granulation tissue and subsequent tissue remodeling, syndecan-2 was expressed extracellularly in the newly formed fibrils which were oriented toward the root surface. Syndecan-2 was found to be significantly expressed on cells that were close to the root surface and within the matrix of repaired cementum covering root dentin as well as at the alveolar bone edge. These findings indicate that syndecan-1 and -2 may have distinctive functions during wound healing of the periodontium. The appearance of syndecan-1 may involve both cell–cell and cell–matrix interactions, while syndecan-2 showed a predilection to associate with cell–matrix interactions during hard tissue formation.
Resumo:
Hydrogeophysics is a growing discipline that holds significant promise to help elucidate details of dynamic processes in the near surface, built on the ability of geophysical methods to measure properties from which hydrological and geochemical variables can be derived. For example, bulk electrical conductivity is governed by, amongst others, interstitial water content, fluid salinity, and temperature, and can be measured using a range of geophysical methods. In many cases, electrical resistivity tomography (ERT) is well suited to characterize these properties in multiple dimensions and to monitor dynamic processes, such as water infiltration and solute transport. In recent years, ERT has been used increasingly for ecosystem research in a wide range of settings; in particular to characterize vegetation-driven changes in root-zone and near-surface water dynamics. This increased popularity is due to operational factors (e.g., improved equipment, low site impact), data considerations (e.g., excellent repeatability), and the fact that ERT operates at scales significantly larger than traditional point sensors. Current limitations to a more widespread use of the approach include the high equipment costs, and the need for site-specific petrophysical relationships between properties of interest. In this presentation we will discuss recent equipment advances and theoretical and methodological aspects involved in the accurate estimation of soil moisture from ERT results. Examples will be presented from two studies in a temperate climate (Michigan, USA) and one from a humid tropical location (Tapajos, Brazil).
Resumo:
Purpose To evaluate if adding clonidine to a standard nerve root block containing local anaesthetic and steroid improved the outcome of patients with severe lumbar nerve root pain secondary to MRI proven lumbar disc prolapse. Methods We undertook a single blind, prospective, randomised controlled trial evaluating 100 consecutive patients with nerve root pain secondary to lumbar disc prolapse undergoing trans-foraminal epidural steroid injection either with or without the addition of clonidine. 50 patients were allocated to each arm of the study. The primary outcome measure was the avoidance of a second procedure- repeat injection or micro-discectomy surgery. Secondary outcome measures were also studied: pain scores for leg and back pain using a visual analogue scale (VAS), the Roland Morris Disability Questionnaire (RMDQ) and the Measure Your Own Medical Outcome Profile (MYMOP). Follow up was carried out at 6 weeks, 6 months and 1 year. Results No serious complications occurred. Of the 50 patients who received the addition of clonidine, 56% were classified as successful injections, with no further intervention required, as opposed to 40% who received the standard injection. This difference did not reach statistical significance (p=0.109, chi-squared test). All secondary measures showed no statistically significant differences between the groups except curiously, the standard group who had been classified as successful had better leg pain relief than the clonidine group (p=0.026) at 1 year. Conclusions This pilot study has shown a 16% treatment effect with adding clonidine to lumbar nerve root blocks and that it is a safe injectate for this purpose.
Resumo:
Project Diagnostics is a tool for construction industry stakeholders wishing to improve project delivery and outcomes. This software identifies areas of poor project health, then establishes probable root causes and provides suggested remedial measures. Its focus is to act as an advanced warning system for construction projects that are failing to meet predetermined objectives based on the critical success factors (CSFs) of cost, time, quality, safety, relationships, environment and stakeholder value.
Resumo:
We study the rates of growth of the regret in online convex optimization. First, we show that a simple extension of the algorithm of Hazan et al eliminates the need for a priori knowledge of the lower bound on the second derivatives of the observed functions. We then provide an algorithm, Adaptive Online Gradient Descent, which interpolates between the results of Zinkevich for linear functions and of Hazan et al for strongly convex functions, achieving intermediate rates between [square root T] and [log T]. Furthermore, we show strong optimality of the algorithm. Finally, we provide an extension of our results to general norms.
Resumo:
In this paper, we describe an analysis for data collected on a three-dimensional spatial lattice with treatments applied at the horizontal lattice points. Spatial correlation is accounted for using a conditional autoregressive model. Observations are defined as neighbours only if they are at the same depth. This allows the corresponding variance components to vary by depth. We use the Markov chain Monte Carlo method with block updating, together with Krylov subspace methods, for efficient estimation of the model. The method is applicable to both regular and irregular horizontal lattices and hence to data collected at any set of horizontal sites for a set of depths or heights, for example, water column or soil profile data. The model for the three-dimensional data is applied to agricultural trial data for five separate days taken roughly six months apart in order to determine possible relationships over time. The purpose of the trial is to determine a form of cropping that leads to less moist soils in the root zone and beyond.We estimate moisture for each date, depth and treatment accounting for spatial correlation and determine relationships of these and other parameters over time.
Resumo:
To achieve the ultimate goal of periodontal tissue engineering, it is of great importance to develop bioactive scaffolds which could stimulate the osteogenic/cementogenic differentiation of periodontal ligament cells (PDLCs) for the favorable regeneration of alveolar bone, root cementum, and periodontal ligament. Strontium (Sr) and Sr-containing biomaterials have been found to induce osteoblast activity. However, there is no systematic report about the interaction between Sr or Sr-containing biomaterials and PDLCs for periodontal tissue engineering. The aims of this study were to prepare Sr-containing mesoporous bioactive glass (Sr-MBG) scaffolds and investigate whether the addition of Sr could stimulate the osteogenic/cementogenic differentiation of PDLCs in tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Sr-MBG scaffolds were characterized. The proliferation, alkaline phosphatase (ALP) activity and osteogenesis/cementogenesis-related gene expression (ALP, Runx2, Col I, OPN and CEMP1) of PDLCs on different kinds of Sr-MBG scaffolds were systematically investigated. The results show that Sr plays an important role in influencing the mesoporous structure of MBG scaffolds in which high contents of Sr decreased the well-ordered mesopores as well as their surface area/pore volume. Sr2+ ions could be released from Sr-MBG scaffolds in a controlled way. The incorporation of Sr into MBG scaffolds has significantly stimulated ALP activity and osteogenesis/cementogenesis-related gene expression of PDLCs. Furthermore, Sr-MBG scaffolds in simulated body fluids environment still maintained excellent apatite-mineralization ability. The study suggests that the incorporation of Sr into MBG scaffolds is a viable way to stimulate the biological response of PDLCs. Sr-MBG scaffolds are a promising bioactive material for periodontal tissue engineering application.
Resumo:
BACKGROUND: The plasminogen activator system has been proposed to play a role in proteolytic degradation of extracellular matrices in tissue remodeling, including wound healing. The aim of this study was to elucidate the presence of components of the plasminogen activator system during different stages of periodontal wound healing. METHODS: Periodontal wounds were created around the molars of adult rats and healing was followed for 28 days. Immunohistochemical analyses of the healing tissues and an analysis of the periodontal wound healing fluid by ELISA were carried out for the detection of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and 2 plasminogen activator inhibitors (PAI-1 and PAI-2). RESULTS: During the early stages (days 1 to 3) of periodontal wound healing, PAI-1 and PAI-2 were found to be closely associated with the deposition of a fibrin clot in the gingival sulcus. These components were strongly associated with the infiltrating inflammatory cells around the fibrin clot. During days 3 to 7, u-PA, PAI-1, and PAI-2 were associated with cells (particularly monocytes/macrophages, fibroblasts, and endothelial cells) in the newly formed granulation tissue. During days 7 to 14, a new attachment apparatus was formed during which PAI-1, PAI-2, and u-PA were localized in both periodontal ligament fibroblasts (PDL) and epithelial cells at sites where these cells were attaching to the root surface. In the periodontal wound healing fluid, the concentration for t-PA increased and peaked during the first week. PAI-2 had a similar expression to t-PA, but at a lower level over the entire wound-healing period. CONCLUSIONS: These findings indicate that the plasminogen activator system is involved in the entire process of periodontal wound healing, in particular with the formation of fibrin matrix on the root surface and its replacement by granulation tissue, as well as the subsequent formation of the attachment of soft tissue to the root surface during the later stages of wound repair.
Resumo:
Cell-based therapy is considered a promising approach to achieving predictable periodontal regeneration. In this study, the regenerative potential of cell sheets derived from different parts of the periodontium (gingival connective tissue, alveolar bone and periodontal ligament) were investigated in an athymic rat periodontal defect model. Periodontal ligament (PDLC), alveolar bone (ABC) and gingival margin-derived cells (GMC) were obtained from human donors. The osteogenic potential of the primary cultures was demonstrated in vitro. Cell sheets supported by a calcium phosphate coated melt electrospun polycaprolactone (CaP-PCL) scaffold were transplanted to denuded root surfaces in surgically created periodontal defects, and allowed to heal for 1 and 4 weeks. The CaP-PCL scaffold alone was able to promote alveolar bone formation within the defect after 4 weeks. The addition of ABC and PDLC sheets resulted in significant periodontal attachment formation. The GMC sheets did not promote periodontal regeneration on the root surface and inhibited bone formation within the CaP-PCL scaffold. In conclusion, the combination of either PDLC or ABC sheets with a CaP-PCL scaffold could promote periodontal regeneration, but ABC sheets were not as effective as PDLC sheets in promoting new attachment formation.
Resumo:
Insulated Rail Joints (IRJs) are designed to electrically isolate two rails in rail tracks to control the signalling system for safer train operations. Unfortunately the gapped section of the IRJs is structurally weak and often fails prematurely especially in heavy haul tracks, which adversely affects service reliability and efficiency. The IRJs suffer from a number of failure modes; the railhead ratchetting at the gap is, however, regarded as the root cause and attended to in this thesis. Ratchetting increases with the increase in wheel loads; in the absence of a life prediction model, effective management of the IRJs for increased wagon wheel loads has become very challenging. Therefore, the main aim of this thesis is to determine method to predict IRJs' service life. The distinct discontinuity of the railhead at the gap makes the Hertzian theory and the rolling contact shakedown map, commonly used in the continuously welded rails, not applicable to examine the metal ratchetting of the IRJs. Finite Element (FE) technique is, therefore, used to explore the railhead metal ratchetting characteristics in this thesis, the boundary conditions of which has been determined from a full scale study of the IRJ specimens under rolling contact of the loaded wheels. A special purpose test set up containing full-scale wagon wheel was used to apply rolling wheel loads on the railhead edges of the test specimens. The state of the rail end face strains was determined using a non-contact digital imaging technique and used for calibrating the FE model. The basic material parameters for this FE model were obtained through independent uniaxial, monotonic tensile tests on specimens cut from the head hardened virgin rails. The monotonic tensile test data have been used to establish a cyclic load simulation model of the railhead steel specimen; the simulated cyclic load test has provided the necessary data for the three decomposed kinematic hardening plastic strain accumulation model of Chaboche. A performance based service life prediction algorithm for the IRJs was established using the plastic strain accumulation obtained from the Chaboche model. The predicted service lives of IRJs using this algorithm have agreed well with the published data. The finite element model has been used to carry out a sensitivity study on the effects of wheel diameter to the railhead metal plasticity. This study revealed that the depth of the plastic zone at the railhead edges is independent of the wheel diameter; however, large wheel diameter is shown to increase the IRJs' service life.
Resumo:
Aortic root replacement is a complex procedure, though subsequent modifications of the original Bentall procedure have made surgery more reproducible. The study aim was to examine the outcomes of a modified Bentall procedure, using the Medtronic Open PivotTM valved conduit. Whilst short-term data on the conduit and long-term data on the valve itself are available, little is known of the long-term results with the valved conduit. Patients undergoing aortic root replacement between February 1999 and February 2010, using the Medtronic Open Pivot valved conduit were identified from the prospectively collected Cardiothoracic Register at The Prince Charles Hospital, Brisbane, Australia. All patients were followed up echocardiographically and clinically. The primary end-point was death, and a Cox proportional model was used to identify factors associated.with survival. Secondary end-points were valve-related morbidity (as defined by STS guidelines) and postoperative morbidity. Predictors of morbidity were identified using logistic regression. A total of 246 patients (mean age 50 years) was included in the study. The overall mortality was 12%, with actuarial 10-year survival 79% and a 10-year estimate of valve-related death of 0.04 (95% CI: 0.004, 0.07). Preoperative myocardial infarction (p = 0.004, HR 4.74), urgency of operation (p = 0.038, HR 2.8) and 10% incremental decreases in ejection fraction (p = 0.046, HR 0.69) were predictive of mortality. Survival was also affected by the valve gradients, with a unit increase in peak gradient reducing mortality (p = 0.021, HR 0.93). Valve-related morbidity occurred in 11 patients. Urgent surgery (p <0.001, OR 4.12), aortic dissection (p = 0.015, OR 3.35), calcific aortic stenosis (p = 0.016, OR 2.35) and Marfan syndrome (p 0.009, OR 3.75) were predictive of postoperative morbidity. The reoperation rate was 1.2%. The Medtronic Open Pivot valved conduit is a safe and durable option for aortic root replacement, and is associated with low morbidity and 10-year survival of 79%. However, further studies are required to determine the effect of valve gradient on survival.