551 resultados para referral method
em Queensland University of Technology - ePrints Archive
Resumo:
Background: Few patients diagnosed with lung cancer are still alive 5 years after diagnosis. The aim of the current study was to conduct a 10-year review of a consecutive series of patients undergoing curative-intent surgical resection at the largest tertiary referral centre to identify prognostic factors. Methods: Case records of all patients operated on for lung cancer between 1998 and 2008 were reviewed. The clinical features and outcomes of all patients with non-small cell lung cancer (NSCLC) stage I-IV were recorded. Results: A total of 654 patients underwent surgical resection with curative intent during the study period. Median overall survival for the entire cohort was 37 months. The median age at operation was 66 years, with males accounting for 62.7 %. Squamous cell type was the most common histological subtype, and lobectomies were performed in 76.5 % of surgical resections. Pneumonectomy rates decreased significantly in the latter half of the study (25 vs. 16.3 %), while sub-anatomical resection more than doubled (2 vs. 5 %) (p < 0.005). Clinico-pathological characteristics associated with improved survival by univariate analysis include younger age, female sex, smaller tumour size, smoking status, lobectomy, lower T and N status and less advanced pathological stage. Age, gender, smoking status and tumour size, as well as T and N descriptors have emerged as independent prognostic factors by multivariate analysis. Conclusion: We identified several factors that predicted outcome for NSCLC patients undergoing curative-intent surgical resection. Survival rates in our series are comparable to those reported from other thoracic surgery centres. © 2012 Royal Academy of Medicine in Ireland.
Resumo:
Objective This investigation utilised the expertise of allied members of multidisciplinary teams working in emergency care settings to develop and validate a Rapid Assessment Prioritisation and Referral Tool (RAPaRT). This instrument is intended for use among patients (with non-life threatening acuity) presenting to emergency care settings to indicate when referral to an allied member of the multidisciplinary team is warranted. Method This three stage instrument development and validation study included: a Delphi panel process to determine key criteria to guide instrument development and identify potential items to be carried forward for testing (stage 1); a prospective cohort of consecutive admissions (n=153) to investigate item sensitivity and specificity and retain only the most suitable items (stage 2); then final consultation with the Delphi panel to ensure the final instrument was clinically amenable (stage 3). Results 23 potential items were identified following stage 1. At the completion of item sensitivity and specificity analysis and in consultation with the Delphi panel, seven items were retained in the instrument. Area under the receiver operating characteristic curve was 0.803 for these seven items in predicting when a referral was warranted. Final consultation with the Delphi panel members also resulted in the addition of an open ended (eighth) item to allow description of any infrequent, but important, reason for referral. Conclusions The RAPaRT has demonstrated substantial promise as an efficient clinically amenable instrument to assist multidisciplinary teams in emergency care settings. Further research to investigate the wider implementation of the RAPaRT is warranted.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.